Linear Clustering of Objects with Multiple Attributes

H V Jagadish

AT&T Bell Laboratonies
Murray Hill, New Jersey 07974

ABSTRACT

There 1s often a need to map a multi-dumensional space on to
a one-dimensional space For example, this kind of mapping
has been proposed to permit the use of one-dimensional
mdexing techniques to a multu-dimensional index space such
as 1 a spanal database This kind of mapping 1s also of value
m assigning physical storage, such as assigning buckets to
records that have been indexed on multiple attributes, to
mirumize the disk access effort

In this paper, we discuss what the desired properties of
such a mappmg are, and evaluate, through analysis and
simulation, several mappings that have been proposed m the
past We present a mapping based on Hilbert’s space-filling
curve, which out-performs previously proposed mappings on
average over a vanety of different operating conditions

1. INTRODUCTION

There 1s often a need to map pomts from a mulo-
dimensional space mnto a single dimension In the database
context, there are two significant applications mn this regard
The first 15 mult-attnbute mdexing Elements from a multi-
dimensional attnibute space are hashed (or otherwise mdexed)
on to a hnear range of block addresses on disk Since
selections may often be specified only on some of the
attributes, or include ranges of attnbutes, 1t 1s desirable that
pomnts that are close together in multi-dimensional attmbute
space also be close together m the one-dimensional space
For example, with mulu-attribute hashing [19], record
signatures are mapped to buckets which are stored on disk
We would prefer to access consecutive rather than randomly
scattered buckets m response to a relational query Similarly,
with a gnd file [13], there 1s a mapping from gnd squares to
disk blocks, and we would like to perform this mappmg to
mimmize the number of disk blocks accessed, and would
prefer that these blocks be sequential 1f possible

Permission to copy without fee all or part of this material 13 granted provided
that the copies are not made or distributed for direct commercial advantage the
ACM copyright notice and the title of the publication and its date appear, and
notice 18 given that copying 1s by permission of the Assocration for Computing
Machinery To copy otherwise or to republish requires a fee and/or specific
permission

© 1990 ACM 089791 365 5/90/0005/0332. $1 50

A second apphcation anises due to a multi-dimensional
mdexing techruque proposed by Orenstemn [15] The 1dea 1s to
develop a single numeric index (on a one-dimensional number
Iine) for each pomt in multi-dimensional space, such that for
any given object, the range of indices, from the smallest index
to the largest, includes few pomts not in the object itself
Other applications, not relevant to databases, are for
bandwidth-reduction of digitally sampled signals [2] and for
graphics display generation [17]

Mapping from a higher to a lower dimension 1s not at all
unusual As early as in our first programming course, we
learn how to take a two-dimensional matnx and map 1t into a
linear range of memory addresses The typical solution 1s to
use the row major format, scanning the matrix row by row

More sophisticated mappmg functions have been proposed
m the literature One, based on nterleaving bits from the
coordinates, was proposed m [15] An improvement was
suggested by Faloutsos m [5], using Gray coding on the
mterleaved bits A third method, based on the Peano curve
[18], someumes also attributed to Hilbert [9], has been
proposed m (7] In this paper, we develop and extend this
proposal based on thuis space-fillmg curve To remamn
consistent with [7], we shall call this curve the Hilbert curve

In general, if the multi-dimensional data has to be accessed
for computation or for queries, then the expected access
pattern has to be taken mto account when selecting the
mapping from multi-dimensional space to one-dimensional
space For example, the simple scan by row may be the best
orgamzation when dealing with a raster-scan printer or display
device However, 1t will perform poorly if most accesses are
m the form of queries that specify a selection by column

In this paper we study this mapping process from multple
dimensions to one dimension, and examine different critena to
evaluate a mappmng function for the class of database
applications outlined above We show that the choice of
parameter values can greatly affect the relative performance of
these mappings However, under most circumstances, the
Peano mapping function proposed here outperforms the others

In Section 2 we ntroduce this mapping function, after first
describing the other functions known n the hterature Critena
for evaluating goodness are discussed mn Section 3, along with
an analysis of the mapping functions for the criteria proposed
Section 4 describes some simulation expeniments performed to
compare different techniques, and the results obtamed
therefrom

For ease of exposition, Sections 2-4 all deal with a square
two-dimensional space In Section 5, we show how the 1deas
of the preceding sections can be extended to muluple
dimensions, and unequal extent m the different dimensions
Finally, we conclude with some closing remarks 1n Section 6

2. MAPPING FUNCTIONS

In this section we discuss techniques to map a pomt from
a given two-dimensional space to a one-dimensional space
We begm with a brief mention of two straightforward
schemes, and then go on, mn Sections 21 and 22, to describe
the two techmiques previously proposed in the lterature
Fmally, we present our proposal mn Secton 23 For
simplicity, we assume square regions with dimensions that are
powers of 2

(b

Figure 1 (a) A Column-wise Scan, and (b) A Column-wise
Snake Scan

(2)

The simplest possible mapping function 1s, of course, a
scan, column-wise (or row-wise) See Fig 1a The assigned
coordinate m one-dimensional space for a given point mn two-
dimensional space 1s the sequential position on the scan line of
the pomt That 1s, given a pomt with coordmate (x,y), 1t 1s
assigned a linear coordnate of x*ydim + y, where ydim 1s the
number of different coordmate values along the y dimension

An easy improvement is to reverse the scan direction for
alternate columns, as shown m Fig 1b Now, the hnear
coordinate of (x,y) 1s still obtained as x*ydun +y for even
values of x For odd values of x, the formula becomes
x+1)*ydim —y — 1

2.1 The z-curve

Proposed first by Orenstein [14-16], in this mapping the
one-dimensional coordinate of a pomnt 1s obtamned by simply
mterleaving the bits of a bnary representation of the X and Y
coordinates of the point m two-dimensional space? Fig 2
shows the resulting mapping for a few different size 2-D
gnds The z1g-zag shape (which would resemble the letter z if
the X and Y axes were transposed) gives nise to the name, z-
curve

1 In C style, all coordinate ranges 1n this paper begin from zero An a-pomnt
coordinate range would be from 0 to -1 inclusive

2 Actually, how the bits are combined depends on a shuffle function In the
extreme case, one could group all the bits from one coordinate before all the
bits from the other to obtain a column scan However, bit-interleaving 1s the
“‘suggested” typical use, and we shall only consider this shuffle funcuon for
this paper

333

(©)

Figure 2. Recursive development of the z-curve

]

(b)

—_
(¢]
~

Figure 3 Recursive development of the gray-code mapping

One could also define the z-curve recursively One can
think of dividing the given region into quadrants and drawing
a curve such as Fig 2a Then each quadrant 1s divided m turn
mto four, and the same basic curve repeated in each, m place
of each node i the previous step One more recursive step,
again dividing each node mto 4 jommed by the basic curve,
gives nise to Fig 2c¢ This sort of recursive construction 1s
useful to keep n mmd for the rest of thus section, when
considering other mappings

2.2 Gray Coding

In a (bmary) Gray code, numbers are coded into bmary
representations such that successive numbers differ 1in exactly
one bit position Faloutsos {5, 6] observed that difference in
only one bit position had a relationship with locality and
proposed that the numbers produces by bit interleaving the
two-dimensional coordinates of a pomnt, as in the previous
technique, be Gray coded to obtain the one-dimensional
coordinate The curves that result are shown i Fig 3°

Once more the curve can be defined recursively As n the
case of the z-curve above, begm with the curve of Fig 3a
Divide each quadrant into 4 and replicate While replicating,
rotate the two upper quadrants through 180 ° Thus we obtain
Fig 3b Now divide into 4 once agam, with replication and
upper quadrant rotation to get Fig 8¢, and so on

2.3 Hilbert Curve

It appears desirable, m the database context, to map from
multiple dimensions to one dimension mn a way that preserves
‘“‘locality’’ as much as possible (The notion of locality will be
made more precise 1n the next section For now an mtuitive
understanding will suffice) However, 1t 1s easy to show that
1t 1s not possible to map an m-dimensional gnd mnto an n-

3 As n the case of z-curves, other Gray code mappings can be denved For
this paper, we focus only on this ‘ typical * Gray code mapping

dimensional gnd, for any n < m 1n such a way that two pomts
that are close together 1n the former are always close together
m the latter Considering nearest neighbors along the grid
axes only, we can immediately see that each grid point has 2m
nearest neighbors 1n the former, and only 22 nearest neighbors
m the latter So at least 2(n—m) points have been forced to
move at least one umt of distance away Similar arguments
apply to points two umts of distance away, three units away,
etc

Therefore, the best that one can hope to do in a mapping
from two dimensions to one dimension 1s to have two of the
four nearest neighbors 1n the 2-D gnd to be nearest neighbors
in the linear mappmng In other words, we would like to have
a hnear mappmg in which successive pomnts are nearest
neighbors n the 2-D gnd Looking at the mappings above,
we find that thus 15 the case neither for the z-curve nor for the
Gray code The “‘jumps’’ n the hnear traversal can easily be
seen m Figs 2 and 3 We would like to find a mapping that
avoids these yjumps, if possible

The column scan, on the other hand, has only one jump
per column, and this 1s fixed by domng the snake scan
Therefore, at least as far as the nearest neighbor criterion 1s
concerned, one can do no better than the snake scan
Observe, however, that each node has two other nearest
neighbors, and these tend to be quite far away m the scan
mappings We would like a mapping in which these two
other nearest neighbors are usually mapped to a point not too
far away in the linear traversal

(a) (®))

@ (e)
Figure 4. Recursive development of the Hilbert curve

These subjective critenia are met by the following mapping
based upon the ‘‘space-filling’’ curve of Hilbert Begm with
Fig 4a As m the previous cases, replicate m four quadrants
When rephicating, the lower left quadrant 1s rotated clockwise
90 °, the lower right quadrant 1s rotated anti-clockwise 90 °,
and the sense (or direction of traversal) of both lower
quadrants 15 reversed The two upper quadrants have no
rotation and no change of sense Thus we obtan Fig 4b
Remembering that all rotation and sense computations are
relanve to previously obtammed rotaton and sense in a
particular quadrant, a repetition of this step gives rise to Fig
4c Further repetitions give Fig 4d and 4e

It 15 straightforward to obtain the lLinear coordinate along
the curve for any given X and Y coordinate value in the 2-D
gnd In the spmt of the recursive construction above, the
linear coordmate is obtained two bits at a ime The most
significant buts of the X and Y give the 2 ms b of the answer,
along with the rotation and sense to be applied to the rest of
the computaton The next bit each from X and Y can be
decoded n the light of the current rotation and sense to give
the next two bits of the answer, and to provide a new rotation
and sense that applies to the rest of the computation Thus the
n-bit result 1s obtamed in n/2 such iterations, with each
iteration compnsing only a handful of wnstructions that can all
be executed m-memory See the Appendix for a simple code
fragment that performs this computation See [3] for an
alternative (byte-onented) technique for computing this result
The mam point to note 1s that the cost of conversion 1s low of
the order of a few dozen machine cycles The enure
computation can be done mm memory only a few very small
tables are required

3. ANALYSIS OF GOODNESS
3.1 The Measures

Access to the data in a database context 1s typically to a
subset specified by means of a selechon criterion The
selection 1itself may either be in the form of exact values
specified on some (but not all) attributes, or 1 terms of ranges
specified on some (possibly all) attributes We may also have
a mix, with some attbutes fully specified, some range-
specified, and some not specified at all

A selection with some atmbutes fully specified and others
not specified 1s a partally specified exact match query, or an
assoclative search on one of muluple possible keys A
selection with ranges specified on all attributes, could be a
conjunctive selection 1n a traditional database (For example,
“Fmnd all employees who are more than 50 years old and earn
between 50K and 100K dollars a year’’) It 1s also typical in
a spatial database, where the ranges together specify a
rectangular bounding box, as discussed in R-trees [8], R*-trees
[21], R*-trees [1], and P-trees [10] See [20] for a tutonal
exposition of this topic

In thus and the following secton, we shall consider the
following two types of quenes as representative
1 One dimension exactly specified m a two-dimensional
space, and the other dimension not specified, so that the
selected points constitute a straight (honizontal or
vertical) line through the gnd
n Both dimensions specified as ranges m the two-
cdimensional gnd, giving a selected area that 1s
rectangular

A lhnear traversal of the multi-dimensional space specifies
the order in which the objects, or index entries, are placed on
disk For each of the above access types, the approprate
measures of cost, for a proposed linear traversal, are

1 Number of disk blocks fetched
u Number of non-consecutive disk blocks fetched We
prefer to fetch a set of consecutive disk blocks rather

than a randomly scattered set, due to the additional seek
time mnvolved

m Size of the linear span for a given selection (difference
between the maximum and minmmum lmear coordnate
m the selected region) This measure 1s relevant only to
Orenstemn’s 1dea of *‘reduce indexing to problem m one
dimension”’

The number of disk blocks fetched depends on the the
capacity of each block in terms of the number of gnd pomts
that can be stored 1n each. For purposes of analysis, we shall
use mstead the number of runs of consecutive grid points, as a
converuent measure of performance of the mapping algorithms
under study This measure 1s exactly measure (u) above, iIf
each gnid point 1s mapped to exactly one disk block* It 1s
also highly correlated with measure (1), since (with many gnd
points to a disk block), consecutive pomts are hkely to be m
the same block while points across a discontinuity are likely to
be 1n a different disk block Please note that this simplhified
measure 1s used only to render the analysis tractable Some
weaknesses mn this simphfication are discussed m Section 3 4
and will be evident 1n Section 4

3.2 Partial Exact Match Selection

Since partial exact matches are not typical of spatial
databases, the linear range of such a selection 1s not likely to
be of interest, and we will not discuss 1t here Instead, let us
see how many continuous runs of gnd pomts are used for
horizontal Iine and vertical line selections, n each of the five
mapping techmiques described in Section 2 Assume a square
gnd with 2™x2™ points

For the column-wise scan, a vertical selection picks a
smgle column corresponding to a single continuous run A
horizontal selection picks a single row, which cuts across one
gnd pomnt n each column, giving 2™ runs for each selection
Averaging over every possible partial exact match selection,
that 1s, over all rows and columns, there are
%(2™ + 1) = 2" + % continuous runs per selection

For the column-wise snake scan, the results are the same
as above, except that only 2™! runs are required for the top
row, rather than 2™, smce every pair of columns has a snake
connection at the top Similarly, the bottom row requires only
2™-141 runs Thus the average number of runs required 15

[1x27] + [2™%(2"=2) + 2™ + (2"'+1)]
2"+ 2"
= rlgmt

For the z-curve, a vertical selection picks a smgle column
m which every pair of of points 1s connected and no more, so
that there are 2™ runs A honzontal selection finds no pomts

4 This assumption has been made 1n [6] and 1s valid for applications where the
s1ze of the mformation at each gnd point can be tuned to match the size of 2
disk block, such as the size of a mult-attnbute hash bucket or one cell 1n a
gnd file However, such matching may not always be possible when one or
more attnbutes take on (successive) discrete values For example, pixels in
an image with each pixel having a certain fixed sized record attached to 1t
Simularly, 1n extensible hashing [4,11,12), there usually are many gnd
ponts to a disk block

335

m the same row connected, so that 2™ runs are required The
average becomes 1 5x2™!

For the Gray code mapping function, consider the basic
unmit, shown m Fig 3a A vertical selection on either column
requires only 1 continuous run When this unit 1s replicated,
as m Fig 3b, the number of runs required doubles for every
column except two mn which the transitions to the next level
are made, saving one discontinuity We thus have two
columns with 2 runs, and two with 1 run Replicating further,
as in Fig 3c, doubles the number of runs once again, except
for two columns Thus, the total number of runs m all the
columns combmned 1s 2 m a square gnd of size 2, 6 n a
square gnd of size 4, 22 m a square gnd of size 8, and so on
Mathematically, let V, be the number of runs with gnd size
2t sothat V, 152, V, 15 4, etc Then, we have

Vk = 4Vk—-1 - 2
= 42Vg_2 -2x4 -2
=41V - 2t - 2t
=221 o4k 4 4 4
=2%1 - W3 + 23
=28(2% 1 +1)

In the honizontal direction, H, 1s 3 rather than 2, and there
15 only one new honizontal hnk established in each doubling,
so the recursion 1s

-2
+1)

Hl = 4Hk—1 -1
=3x4*! - 135451 + 13
=43x2*7 + 13

In particular, the deswred average number of continuous runs
over the 2™ possible vertical and 2™ horizontal selections 1s
H, +V,y2™!, whchis 2™ + 21

Since the Hilbert curve 1s rotated as 1t 1s developed, there
1s no need to separately compute the honizontal and vertical
number of runs Instead, note that the total number of runs in
a2by2 Ry, 155 When the size 1s increased by quadrupling,
three new links are established Therefore

Rk = 4Rk—l - 3
= 5x4*1 - 3xdt! + 1
=2x2%"1 +1

The deswred average 1s R,/ 2" = 271 4 271

We thus find that the snake scan, the Gray code, and the
Hilbert code, all three tie for the best performance, at an
average of 2™ + 27! continuoys runs, for an exact maich
selection on one of two attributes mn a 2-D gnd of size 2">x2™
If the small lower order term 1s ignored, the simple column
scan also weighs in with a similar performance All of these
algorithms require on average about half as many continuous
runs as the number of pomts (which 1s 2™) That 1s, 1f we
have one disk block to a grid pomnt, the number of random
seeks 1s only one half the total number of disk blocks fetched
m such a selection, on average

The z-curve mapping has a significantly worse
performance at 1 5x2™!, which works out to three-quarters as
many continuous runs as the number of gnd pomts (It must
be pomnted out that thus mapping was not proposed for this
type of selection 1 the first place, so 1ts poor performance

here 1s not surpnising). In fact, it has been shown [6] that the
Gray code will always do better than the z-curve, with this
type of selection and this cost measure

Between the three best mappings, however, there 1s no one
that clearly wins It 1s easy to construct examples mm which
one or the other mapping performs better than the others One
difference to notice 1s that the snake scan has an extreme
asymmetry on performance between honzontal and vertical
selections, the Hilbert code 1s almost perfectly symmetric (it
can be shown that the total number of continuous runs in the
two directions differ exactly by 1 for every k), and the Gray
code 1s in between Therefore, 1f the objective 1s to mimmize
the average, when the probability of vertical selection 1s even
shghtly greater (less) than that of a honzontal selection, one
should pick the snake scan (a rotated (row-wise) snake scan)
However, one 1s typically mterested 1n having a low vanance
as well For low vanance, urespective of probability, one
should choose the Hilbert code With a composite objective
function that mimmizes both expectation and vanance, one
may pick any of the three mappings depending on how
asymmetric the probabilities are

3.3 Range Selections

Rather than specify arbitrary ranges on both attributes, we
simplify the analysis by considering only 2X2 square regions
While there 15 no evidence that results denved for small
square regions are applicable to arbitrary rectangular regions,
there 1s reason to expect that a techmque that does well on
small regions, urespective of the region alignment on even
boundaries, 1s also likely to do well on large regions as well
The cost measure 1s once more the number of continuous runs
required to cover the 4 gnd ponts in the region

For the column scan exactly 2 runs are required for every
2x2 region selected For the column snake scan, only 1 run 1s
required for 2™-1 regions out of a total possible (2"-1)?
number of regions The average works out to 2 — @m-1)71,
which 1s roughly 2 once agamn

For the z-curve, only one run is required if the selected
region is aligned on an even boundary in both honzontal and
vertical directions The probabiity of this occumring s
roughly one half for each direction (It 1s actually a shade
better than one half, since there are 2! even alignment
positions, and 2" '-1 odd alignment positons We neglect
this low order difference to simphfy the computation) If the
selected square 1s off alignment m both directions, 4 runs are
required If the selected square 1s aligned honzontally, but not
vertically, 3 or 4 runs may be required, depending on whether
a multiple of 4 boundary was crossed or not Finally, if the
selected square 15 aligned vertically, but msaligned
horizontally, 2 runs are requred So 1 run 1s required with
probabihity 025, 2 runs with probability 025, 3 runs with
probability 0 125, and 4 runs with probability 0 375, giving an
expected number of runs of 2 625

For the Gray code, similarly, I run 1s required 1if the
square 1s perfectly aligned, and 2 runs are needed if aligned
vertically but misaligned horizontally If the selected square 1s
misaligned vertically, 3 runs are required 1f the horizontal
alignment 1s on an even boundary, and 4 runs 1f 1t 1s not So

336

1, 2, 3, or 4 runs are required, each with a probability of 0 25,
for an overall 2 5 expected number of runs

For the Hilbert code, as in the previous two cases, even
alignment 1 both directions requires only 1 run Due to the
rotations of the basic template, computing the the number of
runs requires much book-keepmng when the alignment s off
By recursively growing the size of the gnd, a series of values
can be obtained and summed, to produce a number very close
to 2 That 1s, for the Hilbert code, the expected number of
runs 1s 2 (The denvation 1s conceptually straightforward, but
mvolves lengthy computation with careful book-keeping As
such 1t 1s not presented here The interested reader should
contact the author directly)

Let us turn now to the linear span spanned by a selected
square region The column scan clearly has a limear span of
2™+1, bemng one full column of length 2", and one element 1n
addition, for every 2x2 square region selected In the snake
scan, the linear span can vary between 3 (when the selected
square covers the end at which two columns are connected)
and 2™*'-1 (when 1t covers the other end of such a column
pair) The average 1s easily obtamed to be 2™+1, exactly the
same as in the case of a simple column scan

For all three recursively defined mappings, the linear span
can be computed by quadrature Divide the given 2"x2™ gnd
mto quadrants With probabuility roughly 27, the selected 2x2
square will cross a vertical quadrant boundary, and with a
similar probabihty it will cross a honzontal quadrant
boundary For the z-curve, if a vertical quadrant boundary 1s
crossed, the hnear span will mclude roughly two full
quadrants, or 22*! pomts If a horizontal quadrant boundary
1s crossed, the number of grid points in the span 1s small by
companison If no quadrant boundary is crossed, then the
selected square hes entirely within some one quadrant of the
gnd Divide this quadrant mto four quadrants, and repeat the
process Wath probability 27!, the linear span will be 223
Continuing thus, we obtain a senies that can be summed to get
2" (Note that this 1s an approximate answer the actual
average linear span will be somewhat higher)

The same computation applies to the Gray and Hilbert
mappings as well, except that when the vertical quadrant
boundary 1s crossed, the mmmmum lhinear span established 1s a
function of the vertical coordnate as well, and ranges from
almost 0 to nearly 2%, but with an average of 2" The
summation proceeds as before In the case of the Hilbert
mapping, due to the rotaton mn some quadrants, the words
“horizontal” and ‘‘vertical”” may have to be flipped
However, the mathematics remams the same

Thus we find for range selections that there 1s little to
choose between the mappings m terms of limear span For a
constant size of area selected, mn all cases, the lmnear span
obtained 1s of the order of the side of the gnd, or the square
root of the area of the gnd In terms of obtaming a low
vanance, the simple column scan may actually turn out to be
the best of the lot

In terms of the number of continuous runs, one agan the
scan mappings did the best along with the Hilbert code The
Gray code came m next, and the z-curve after that

3.4 Caveat on Scan Mapping

All the preceding analysis could easily lead one to behieve
that a linear scan or snake scan mappmng 1s all that one
requires that all the discussion regarding more complex
mappings hke the z-curve, Gray and Hilbert, are pointless
mathematical exercises While this 1s certanly true when the
cost measure 1s the linear span, a caveat with regard to the
other two cost measures 1s worth repeating

The cost measure used n the analysis, as a substitute for
the number of disk blocks (randomly accessed disk blocks)
fetched, 1s the number of continuous runs of gnd pomts To
the extent that each gnd pomnt maps to a single disk block,
this analysis accurately measures the number of random disk
accesses required (the total number of disk accesses bemg
identical for all mappings) However, to the extent that
multiple grid ponts may be mapped to a single block, the
analysis above 1s only partly applicable In particular, small
disconunuities are lhikely to be immaterial only large ones
count Smnce many of the discontinuities are small m the
recursively defined mappings, when these discontinuities are
ignored the performance of these mappmgs will improve
considerably On the other hand, almost all discontunuities are
large mn the scan mappings, and therr performance remains
essentially unaltered

For example, in a partial exact match selection, suppose
that a continuous run 1s not mterrupted if there 15 a
discontinmty of one grid pomt (That 1s, a sequence
“2,3,4,6,8,9"" 1s considered a single run, rather than three
runs ‘2,34, ‘6", and *'8,9’, since the breaks involve no
more than one gnd pomt each *‘5°° and “*7"’) Then the z-
curve mapping has every alternate parr of grnid pomts
‘“‘connected’’ m a honzontal selection, improving its
performance for horizontal selection, and overall, to 2™}, as
good as the scan mappmg Similarly, if discontinuities of up
to two gnd pomts are ignored, then the Gray and Hilbert
mappings 1mprove by more than a factor of 2

We shall see these effects through simulation experiments
m the next section In particular, Figs 5 and 6 highlight the
weakness of the scan mapping

4. EXPERIMENTAL RESULTS

To compare the actual performance of the different
mapping algorithms, several experiments were run A
summary of the results obtamed are presented here In all
expenments the performance of the simple column scan and
the snake column scan differed lttle, with the snake scan
doing shightly better To mimmize clutter only the results for
the snake scan have been shown Where the results obtained
exactly match the analysis in the previous section, only a
mention 1s made, no curve 1s plotted The curves in the plots
are 1dentified by the letter S for scan, Z for z-curve, G for
Gray, and H for Hilbert

Figures 5 through 7 show expenments in which each
possible exact match selection was made Fig 5 shows the

337

200 —

100

Blocks 50
Fetched

20

10

5—4

T I T T | T T I
1 3 10 30 100 300 10003000
Block Size

Figure 5. Number of blocks fetched decreases as the block
s1ze 15 increased on a gnd size of 256 x 256

200 4
150 -
Number
Non-Sequential g _
Block
Access
50 —
0

T T T T T T
10 30 100 300 10003000
Block Size

1
1 3

Figure 6. Number of non-sequential blocks fetched decreases
as the block size 1s increased on a gnd size of 256
x 256

variation 1n the number of blocks fetched as the block size 1s
mcreased on a 256x256 gnd (There are 512 possibilities, 256
vertical selections and 256 horizontal selections) The
averages are plotted When each disk block holds exactly one
gnd point, 256 blocks are fetched wrespective of the mapping
used As the block size increases to a few gnd pomts, notice
how the recursively defined mappings are able to capitalize on
this and reduce the number of blocks fetched The Gray and
Hilbert mappings both perform equally well (the curves are
hard to distinguish 1n the figure) and better than the others
The z-curve does almost as well also The scan mapping,
however, 1s unable to capitalize on the mncreased block size
and starts faring worse and worse relative to the others, up to
a pomnt Once the block size becomes large enough, mcluding
a whole column of gnd pomnts at a time, the scan mapping
also begins to benefit At the extreme, if the entire database 1s
resident in a single block, all the algorithms once agamn
perform 1dentically, requining a single block fetch

The average number of runs of disk blocks fetched 15
shown in Fig 6 With block size one the numbers obtaned
perfectly match the analytical predictions There are exactly
192 runs for the z-curve, and 128 for the other three

mappings As the block size 15 increased, the average number
of runs decreases As m Fig 5, this decrease 1s sufficiently
slow for the snake scan that the z-curve 1s very soon able to
do better than i1t. Once more, as the block size gets very
large, all the mappmgs start looking alike

45ﬂ

4

Hits 35

per
Block 3

nN&
L9 —

2

T I I | T
64 128 256 512
Grid Size

Figure 7. Number of relevant items fetched on average per
block of size 30 tems remams fairly constant as the
size of the database 15 varied

The size of the gnd was varied from 8x8 to 512x512 and
the same trends were observed for all sizes Fig 7 1s a plot as
the gnd size 1s varied of the number of hits per block, that 1s,
the number of pomnts that belong to the selected set on average
per block fetched (This number can be obtaned by dividing
the number of pomnts to be fetched, which 1s the length of one
side of the gnd, by the number of blocks that were fetched)
As before, the curves show the average over all possible
selections

The most heartening news m Fig 7 1s that for all three
recursive algornithms, the number of hits per block remamns
constant as the size of grid 1s increased In other words,
urespective of the size of the database, 1t 15 possible to have 4
to 5 relevant items in each bleck of size 30 Therefore, the
effort required to fetch a selecion remams proportional to the
size of the selected set, but 1s mndependent of the size of the
database In contrast, the scan mapping does worse and worse
as the size of the database mcreases

The remamming experiments deal with range selections
Figs 8 and 9 plot the averages obtamed over every square of
a specified size (Which 1s varied on the X-axis m these figures)
m a gnd of size 128x128. Similar results were obtamed for
different size grids (not plotted)

Fig 8 1s mtended to measure the number of continuous
runs of disk blocks fetched Smce the number of disk blocks
fetched varies as the size of the selected square 1s ncreased,
this number has been normalized by the total number of disk
blocks fetched, and plotted as the fraction of disk blocks read
that are sequentially accessed The results plotted perfectly
match the analytical predictions Considering the leftmost
pomnt 1n the curve, where the selected square size 15 2X2, a
total of 4 blocks have to be fetched, one for each of the 4 gnd
pomnts For both the Hilbert code and the snake scan mapping,
exactly half the reads, that 1s 2 block fetches, are non-

338

1+
u u
8 |
Fraction
Blocks
Read _
Sequentally
4
TT - 7TTT1T T T I
23 567 910 16 20
Square Size

Figure 8. Fracuon of blocks (of size 1) read sequentially as
the size of the selected square 15 vaned

15 4
Hits
per 10 A
Block
5 _
T T T T L T
23 567 910 16 20

Square Size

Figure 9. Number of relevant items fetched on average per
block of size 30 items increases as the size of the
selected square 1s increased on a gnd 128 x 128

sequential, and the other half are sequential Similarly, the
Gray code and the z-curve have points a little below 04 and a
htle above 03 respectively, corresponding to the analyucally
predicted 2 5 and 2 625 runs

As the size of the selected square 1s increased, all
mappmgs do better In fact, the number of non-sequential
blocks read appears to be proportional to the square root of
the area selected (This square root relahonship 1s easy to
establish analytically for the scan mapping) The difference in
performance between the curves continues with the Hilbert
and snake scan curves doimng the best with performance that 15
so close that the curves cannot be told apart in the figure

As the block size 1s varied, results similar to Figs 5 and 6
are obtamed for range selections as well If the size of the
database 1s varied, as mn Fig 7, the performance remamns
roughly constant These curves have not been plotted
Instead, m Fig 9, we measure the performance of all the
mappings m terms of huts per block for a block size of 30
The results obtamed here are even more heartenmng than m

Fig 7 As the size of selected area 1s increased, the number
of hits per block goes up for all the mappmngs The Hilbert
code mapping does the the best, followed by the Gray and z-
curve mappings both of which do about equally well The

M e OO
1 IICHT UILICTCICES

| NORPIpIPI I P

OECOMC 1arger as

snake scan comies
the size of the selected square 1s increased

[P
i 1ast

9
Fraction
Blocks
Rt g AN\
Sequentially T \
. A / \\ 2
\/ B A V
8 T T T T T T T
32 64 128 256 512 1024 2048
Gnd Size

Figure 10. Fraction of blocks (of size 1) read sequentially as
the s1ze of the database 1s vaned

CERN

1 T | 1 T [[
32 64 128 256 512 1024 2048
Grud Size

14

12
Hats

Block 107

Figure 11 Number of relevant items fetched on average per
block of size 30 items remamns fairly constant as
the size of the database 1s varied

There 15 no reason why range selechons should be
restricted to square areas Several experiments were run with
randomly generated rectangles, and some of the results are
presented m Figures 10 through 13 In each case, 100
rectangles were randomly generated from a weakly
exponential distnbution that tended to keep the size of each
rectangle small The size of selected rectangle (or selectivity)
1s varied m Fig 12, to check for sensitivity The results
presented are the average of 100 random rectangles

In Fig 10, we measure the fraction of blocks (of size 1)
read sequentially Just as m Fig 8, we find that the Hilbert
mapping and the snake scan vie for the first place The
Hilbert mapping seems to do just a shade better now The
Gray code mapping comes in a distant third, with the z-curve
even further behind On the X-axis mn this figure, the size of
the database 1s varied The fraction blocks read sequentially
remains roughly constant as this size 1s vaned

339

20 -

N

15 ///

Hats
Per 10
Block
5 4
] T
10 100 1000

Rectangle Area

Figure 12. Number of relevant items fetched on average per
block of size 30 items increases as the area of the
selected rectangles 1s increased on a gnd 512 x

512
1000
Lmear 1qp -
Span
10 -

| T] I [T T
32 64 128 256 512 1024 2048
Gnd Size

Figure 13. Average linear range spanned by a random
rectangle as the size of the database 15 varied

Fig 11 measures the numbers of relevant items in each
disk block (of size 30 items) fetched As one may expect
from Fig 9, the Hilbert mapping performs the best, the Gray
code and z-curve mappings compete for second place, and a
column snake scan comes 1 last As the size of the database
1s varied, the performance of the three recursively defined
mappings remamns roughly constant, while that of the scan
mapping deteriorates

Fig 12 shows the vanation in huts per block as the size of
the selected rectangle 1s vanied We find that as the rectangle
size 1s increased, each of the mapping techmques performs
better, but their relative performance remains the same The
trends are what one would expect on the basis of Fig 9,
which plots the same curve for the case perfect squares

Fmally, in Fig 13, we plot the linear span of the selected
rectangular regions in the 2-D gnd, normalized by the area of
the region This span turned out to be almost identcal on
average for all the mappmngs used As predicted by the
analysis, this span mncreases with gnd size Moreover, the
linear span (without any normahization) was found, m a
separate experiment not plotted here, to vary by less than 25%

as the size of the selected rectangles was varied 2 orders of
magmtude 1 a fixed size gnd

5. EXTENSIONS

5.1 Multiple Dimensions

An n-bit binary reflecuve Gray code constitutes a tour of
all the vertices of an n-dimensional hypercube, traversing only
the edges between these vertices To develop an n-
dimensional Hilbert mapping we begmn by defining a basic unit
m n dimensions, of size 2x2x2x , using a bmary reflecuve
Gray code® Fig 14 shows the pnmitive that 1s used to
construct a Hilbert mapping for n =3

-

Figure 14. The Pnmitive for a 3-dimensional Hilbert Curve

s N S
4 Al &K

Figure 15. Different ways of covering a 2x2x2 cube and
traversing one umt in the Z direction

The curve of Fig 14 has its end poimnts separated by one
unit 1n the Z direction The same separation of end pomts can
be obtamned through other curves such as those shown m Fig
15 One difference hes m the value of the X and Y
coordinates of the pomts (differentiating the columns of Fig
15) Another difference lies in the basic curve used the top
row of Fig 15 shows the same primitive rotated around the Z
axis The bottom row shows rotations of a different pnmitive
We have chosen the curve of Fig 14 as our basic pnmitive,
and will use the top row of Fig 15 as necessary, to construct
a Hilbert mapping from three dimensions to one

Figure 16. The Front Half of a Three-dimensional Hilbert
Curve on a Cube 4x4

We now develop the recursive construction step Take the
basic umit of Fig 14 and replicate one basic umit for each of
its 8 nodes The first unit 1s at the front bottom left It must
have 1ts curve starting from the front bottom left corner, and

S Thus does not imply that a mulu-dimensional Hilbert mapping is the same as
a Gray code mapping Recall that even in the two dimensional case, the
Gray and Hilbert codes used the same elementary unit, in Fig 3a and Fag
4a The difference 1s 1n the construction

340

must end next to front top left corner, making a transition 1n
the Y direcion An appropnate rotation and sense of the
basic pnmitive can be found to achieve this See Fig 16
The second unit must have a transition along the X axis, and
so on Thus the rotation and sense of each replicated umnit is
determined Once determmed for the first recursive step, the
same set of rotations and sense changes can be used for as
many recursive steps as necessary to generate a mappmg of a
large enough gnid

In a similar fashion, one can also extend the Gray code
and z-curve mappmgs to multiple dimensions No
expenments were run on mulu-dimensional mappings
However, the analysis presented n Section 3 can easily be
extended to apply to any arbitrary dimensions The essential
results remain the same If anything, the difference between
the mappmngs gets exaggerated To understand why this
happens, consider a scan mapping (Z changes fastest, Y next,
and X most slowly) n 3 dimensions Two pomts that differ
by one 1n the X coordmate value, will be mapped n?® apart in
the hnear map, as opposed to only »n apart mn the two
dimensional case (where n 1s the size of the gnd m each
dimension) Normahzing for the total number of ponts on the
gnd, we have gone from a difference that 1s N* to something
N, where N 15 the total number of pomts 1n the gnd (equal
to né™m%ony Thys trend continues as the dimension 1s
mcreased further

5.2 Non-Square Grids

For ease of exposition, we have throughout assumed a
square grnd Often different attributes may have different size
domains For example, most CRT screens are not square, but
the pixels used on them are, so that different numbers of
pixels are on the grid in the X and Y dimension For another
example, consider two attmbutes age and sex, m some
personnel database While there probably will be dozens of
different integer values for the age attnibute, there can possibly
be only two values for the sex attnbute This attnbute space
cannot convenuently be forced mnto a square grid

Consider a rectangular gnd of size 2™ in one dimension
and 2" 1n the other, n>m From a bit mterleaving standpoint,
we can ask what to do with the extra n-m bits m one
dimension These buts could be tacked on as the most
significant bits of the 2m+n bit result word, or as the least
significant bits, or they could be interspersed throughout We
show how each of these options can be implemented, one by
one

Figure 17. The 16x16 gnd of Fig 4d 1s repeated four times
to obtamn a 64x16 gnd

A 2™x2™ square area can be covered with the usual Hilbert
curve The displacement between the begmning and end of
this curve 1s always exactly 2” 1n the X direction Replicate
this pattern 2"~ umes (rotating 1t first, if the Y dimension 1s
bigger) We thus obtain a nearest neighbor connected curve

(2) (b (© @

Figure 18. (a) A 4x2 pnmuwve, (b) Its rotation by 90°, (c)
These primitives used to construct an 8x4 gnd,
and (d) Its rotation

that covers the given area See Fag 17

A second option 1s to develop a primutive that 1s 2" ™+ x2
mstead of just 2x2 Create a 2™ 'x2™! grid In the last step,
mstead of replicaung the regular 2x2 prumtive, use this
special pnmitive Note that “‘rotation’’ of this primitive 1s a
httle strange rotating the primitive of Fig 18a gives Fig 18b
This special defimtion of rotation is required because the
aspect ratio of the pnmitive cannot change upon rotation, 1t
has to be a change only m the connection points Every shape
can be considered 4 pieces jomed by 3 connections A
rotation rotates the pieces, each piece independently The
primitive of Fig 18a has each of 4 pieces a vertical segment,
with three connections, one between each pair of successive
pieces In the rotation, each piece becomes a horizontal
segment, with three connections between them This idea
becomes more clear comparing Fig 18c to 18d Fig 18c 1s
constructed by the standard recursive generation rule for the
Hilbert curve The first quadrant has a 18b piece in it, which
rotated becomes the 18a piece The next quadrant in 18c 1s
the 18a piece, which rotated becomes the 18b piece, and so
on, to result n Fig 18d after the pieces are hooked together
with the appropniate connections

An arbitrary interspersal of the bits in the two coordinates
1s achieved by defining pnmutives of size 2*x2, for any value
of k& Wherever extra bits are to be mterspersed, instead of
performing the usual quadruphcation with the 2x2 primitive,
use this special prnmitaive instead These 1deas extend to
multiple dimensions n a straightforward way

6. CONCLUSIONS

In this paper we mtroduced a mapping, based on the
Hilbert curve, from multi-dimensional space to a lme We
discussed database applications m which such mappings are of
value, and developed measures to evaluate ther performance
Through algebraic analysis, and through computer simulaton,
we showed that under most circumstances, the Hilbert
mapping performed as well as or better than the best of
alternative mappings suggested mn the literature

In particular, this paper demonstrated that 1t 1s possible to
develop a mapping of mult1-attribute space to disk blocks such
that the number of disk blocks retneved on a selection 1s a
function only of the size of the selected set and not of the size
of the database Moreover, the number of disk blocks
retrieved grows less than proportionately with the size of the
selected set The same results still hold true if one counts
number of non-sequential disk blocks fetched instead of total
number of disk blocks fetched

341

These results are especially heartening m light of the
proof, mn [22], which established mn general (given a umform

distnbution of key values), that a k attnbute selecuon on a
k-1

database with N records has a file access cost of ON *)

Our expeniments seem to indicate that, for the specific classes

of quernes studied, we can do much better than this worst case
APPENDIX

Code Fragment for Generating the Two Dimensional
Hilbert Mapping

mt rotation_table[4] = {3, 0, 0, 1},
mt sense_table[4] = {-1, 1, 1, -1},
mt quad_table[4]{2][2] = { {{0,1},{3,2}}.
{{1.21,{0.3}}, {{2.3}1.{1,0}}, {{3.0}1.{2,1}} },

{
rotation = 0, /* Imtially no rotation */
sense =1, /* Imtially positive sense */
num =0,

for(k=s1def2 ,k>0,k=k2){

xbit=x/k, /¥ Getthemsb of x */

ybit =y/k ,

x —=k*xbit, /* Take away the current m s b */
y —= k*ybit ,

quad = quad_table[rotation][xbit][ybat] ,
/* Which quadrant am I m? */
num += (sense == —1) ? k*k*(3—quad) k*k*quad ,

rotation += rotation_table[quad] ,

/* Fix rotation value for next time */
if (rotation >= 4) rotation —= 4 ,

/* Addition 1s modulo 4 */
sense *= sense_table[quad] ,

/* Fix sense value for next time */

The above code fragment produces in num the linear
position of the grid pomnt with coordinates x and y, mn square
gnd with side of size side

ACKNOWLEDGEMENTS

I would like to thank Bruce Hillyer for a very careful
reading of the manuscnpt

REFERENCES

Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider,
and Bernhard Seeger, “‘The R*-wree An Efficient and
Robust Access Method for Pomnts and Rectangles,”
Proc ACM-SIGMOD Conf on the Management of
Data, Adantic City, NJ, May 1990

(1]

[21 T Bually, ‘‘Space-Filling Curves Their Generation and
Therr Application to Bandwidth Reduction,”” IEEE
Trans on Information Theory, IT-15(6), Nov 1969,

658-664

(3]

(4]

&)

(6]

(7]

(8]

(9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

{171

(18]

(191

A R Butz, “Alternative Algonithm for Hilbert’s
Space-Filling Curve,’” IEEE Transaction on Computers,
C-20, Apr 1971, 424426

R Fagm, J Nievergelt, N Pippenger, and H R Strong,
“Extendible Hashing — A Fast Access Method for
Dynamuc Files,”” ACM Trans on Database Systems,
4(3), Sept. 1979, 315-344

C Faloutsos, ‘‘Multiattnbute Hashing Using Gray
Codes,”” Proc ACM-SIGMOD Int'l Conf on the
Management of Data, Washington, D C, 1985, 227-238

C Faloutsos, ‘*Gray Codes for Partial Match and Range
Quernies,”” IEEE Trans on Software Engineering, 1987

C Faloutsos and S Roseman, ‘‘Fractals for Secondary
Key Retneval,” Proc of the ACM Conf on the
Principles of Database Systems, March 1989, 247-252

A Guttman, ‘R Trees A Dynamic Index Structure for
Spaual Searching,”” Proc ACM SIGMOD Int'l Conf on
the Management of Data, 1984, 47-57

D Hilbert, ‘*Uber die steitige Abbildung emer Linie auf
emn Flachenstuck,’’ Math Ann, 38, 1891

H V Jagadish, ‘‘Spatial Search with Polyhedra,”” Proc
Int'l Conf on Data Engineering, Los Angeles, CA, Feb
1990

P-A Larson, ‘‘Dynamic Hashing,”” BIT, 18, 1978, 184-
201

W Litwin, ‘“‘Linear Hashing A New Tool for File and
Table Addressing,”’ Proc of the Sixth Int'l Conf on
Very Large Databases, Montreal, 1980, 212-223

J Nievergelt, H Hinterberger, and K C Sevcik, ‘‘The
Gnd file An Adaptable Symmetric Mulukey File
Structure,”” ACM Trans on Database Systems, 9(1),
1984

J A Orenstein and T H Merett, ‘A Class of Data
Structures for Associative Searchung,”” Proc Third
SIGACT News SIGMOD Symposium on the Principles of
Database Systems, 1984, 181-190

J A Orenstemn, ‘‘Spatial Query Processmg m an
Object-Onented Database System,’” Proc ACM
SIGMOD Int'l Conf on the Management of Data, 1986,
326-336

J A Orenstemn, ‘‘Redundancy in Spatial Databases,”
Proc ACM SIGMOD Int’'l Conf on the Management of
Data, Portland, OR, May-June 1989

E A Patrick, D R Anderson, and F K Bechtel,
‘‘Mappmg Multidimensional Space to One Dimension
for Computer Output Display,”” IEEE Trans Computers,
C-17, Oct 1968, 949-953

G Peano, ‘‘Sur une courbe qui rempht toute une are
plame,”” Math Ann, 36, 1890

J B Rothme and T Lozano, ‘‘Attribute Based File
Orgaruzation m a Paged Memory Environment,”
Communication of the ACM, 17(2), Feb 1974, 63-69

342

[20]

[21]

(22]

H Samet, ‘‘Hierarchical Representation of Collections
of Small Rectangles,”” ACM Computing Surveys, 20(4),
December 1988, 271-309

T Sellis, N Roussopoulos, and C Faloutsos, *“The R+
Tree A Dynamic Index for Muludimensional Objects,”
Proc 13th Int'l Conf on Very Large Databases,
Bnghton, U K, Sep 1987, 507-518

Y Tanaka, *‘Adaptive Segmentation Schemes for Large
Relational Database Machines,”’ Proc 3rd International
Conference on Database Machines, Munich, FRG, 1983

