Maintenance of a Minimum Spanning Forest
in a Dynamic Plane Graph*

David Eppsifem]L Giuseppe F. Italiano® Roberto Tamassia’

Robert E. Tarjam11 Jeffery Westbrook|| Moti Yung™*

November 11, 1991

Abstract

We give an efficient algorithm for maintaining a minimum spanning
forest of a plane graph subject to on-line modifications. The modifi-
cations supported include changes in the edge weights, and insertion

*Research supported in part by NSF grant CCR-88-14977, NSF grant DCR-86-05962,
NSF grant CCR-90-09753, ONR Contract N00014-87-K-0467, DIMACS (Center for Dis-
crete Mathematics and Theoretical Computer Science) a National Science Foundation
Science and Technology Center, grant NSF-STC88-09648, and Esprit II Basic Research
Actions Program of the European Communities Contract No. 3075. A preliminary version
of this article appeared in the Proceedings of the 1st ACM-SIAM Symposium on Discrete
Algorithms, held in San Francisco, CA, January 1990.

TDepartment of Information and Computer Science, University of California, Irvine,
CA 92715. This work was done while the author was at the Department of Computer
Science, Columbia University, New York, NY 10027.

{Department of Computer Science, Columbia University, New York, NY 10027 and
Dipartimento di Informatica e Sistemistica, Universitd di Roma, Rome, Italy. Partially
supported by an IBM Graduate Fellowship.

$ Department of Computer Science, Brown University, Box 1910, Providence, RI 02912-
1910.

fDepartment of Computer Science, Princeton University, Princeton, NJ 08544, and
NEC Research Institute, Princeton, NJ 08540.

I Department of Computer Science, Yale University, New Haven, CT 06520. This work
done while the author was at the Department of Computer Science, Princeton University.

**IBM Research Division, T. J. Watson Research Center, Yorktown Heights, NY 10598.

and deletion of edges and vertices which are consistent with the given
embedding. To implement the algorithms, we develop a data structure
called an edge-ordered dynamic tree, which is a variant of the dynamic
tree data structure of Sleator and Tarjan. Using this data structure,
our algorithm runs in O(logn) time per operation and O(n) space.
The algorithm can be used to maintain the connected components of
a dynamic planar graph in O(logn) time per operation. We also show
that any algorithm will need Q(logn) amortized time per operation,
given a set of machine operations that is fairly general.

1 Introduction

Let G = (V,E) be an undirected plane graph (a planar graph embedded
in the plane). Let w(e) be a real-valued weight for each edge e € E. A
minimum spanning forest for (7 is a spanning forest (a set of spanning trees,
one for each connected component) that minimizes the sum of the weights of
the edges in the forest. A maximum spanning forest is defined analogously.
We consider the problem of maintaining a representation of a minimum or
maximum spanning forest in G while processing on-line a sequence of update
operations. An update operation may be a change weight(e, A) operation,
which adds real number A to the weight of the graph edge e, or an operation
that changes the structure of G, such as the insertion (or deletion) of an edge
(or a vertex). A structural modification must be consistent with the current
embedding; for example, edge e = {u, v} can be inserted only if v and v lie
on a common face. Our representation will allow us to answer a number of
queries about the minimum spanning forest, such as the current weight of
each tree, whether an edge e is currently a spanning edge, and if so, which
tree it belongs to.

Dynamic problems on graphs have been extensively studied. Several algo-
rithms have been proposed for maintaining fundamental structural informa-
tion about dynamic graphs, such as connectivity [9, 10, 15, 24, 26], transitive
closure [17, 18, 19, 20, 21, 34, 23], and shortest paths [1, 8, 25, 28, 34]. Dy-
namic planar graphs arise in communication networks, graphics, and VLSI
design, and they occur in algorithms that build planar subdivisions such as
Voronoi diagrams. Algorithms have been proposed for maintaining the em-
bedding of a planar graph [29] and for incremental planarity testing [2, 3].
The dynamic minimum spanning tree problem has been considered by Spira
and Pan [28], Chin and Houck [7], Frederickson [10], and Gabow and Stall-
mann [11]. Frederickson gives an algorithm based on “topology trees” that
runs in O(y/m) time per operation on general graphs, and O((logn)?) time
on plane graphs. As Frederickson notes, the minimum spanning tree for a
general graph being modified on-line by edge additions alone can be main-

tained in O(logn) amortized' or worst-case time per operation, using the
dynamic tree data structure of Sleator and Tarjan [26]. Gabow and Stall-
mann [11] improve Frederickson’s bound for planar graphs to O(logn) time
per operation for the case of a fixed graph with changing edge weights. Their
method also uses the dynamic tree data structure.

In this paper we present a data structure and an algorithm for maintain-
ing a minimum spanning forest of an edge-weighted subdivision the plane
subject to both edge weight changes and an extended set of modifications
which permit the underlying structure to change dynamically. This is an
important extension as it allows fast maintenance of a dynamically changing
structure; a good example of such a structure is the map of Europe (which
was, is, and probably will be subject to dynamic changes)— borders are re-
drawn in a manner that is consistent with the previous map. Our algorithm
extends the approach of Gabow and Stallmann [11]. The subdivision is al-
lowed to contain loop edges or multiple edges. Our algorithm runs in O(m)
space and O(log m) amortized time per operation, where m is the number of
edges in the subdivision. We can maintain a minimum spanning forest of an
n-vertex plane graph G in time O(logn) per update by using our subdivi-
sion algorithms. Our algorithm can also be used to maintain the connected
components of a dynamic plane graph.

This paper addresses two questions: first, what is the correct framework
to use in describing a dynamic plane graph, and second, how does one imple-
ment the desired operations? To describe and manipulate the dynamic plane
graph, we use the subdivision representation scheme of Guibas and Stolfi
[13], which we describe in more detail in Section 2. This scheme provides a
pair of simple, powerful primitives from which more complicated operations
such as the insertion or deletion of edges can be built. Our spanning tree
algorithm is built on top of this framework.

For the sake of completeness we describe in detail the Gabow-Stallmann
O(log m)-time algorithm for the restricted setting of a fixed graph that is
undergoing only edge weight changes on-line. To extend this scheme to dy-
namic subdivisions, each minimum spanning tree is maintained with a variant
of the dynamic tree data structure of Sleator and Tarjan [26, 27] called an
edge-ordered dynamic tree. This data structure is used to represent free trees
in which for each vertex there is a total ordering of the incident edges. It
can support much the same operations as Sleator-Tarjan dynamic trees, with
the addition of operations to split and condense vertices while preserving the
edge ordering. Depending upon the needs of the application, this repertoire
of operations can be used to test membership of an edge in the spanning

IThe amortized cost of an operation is the cost of a worst-case sequence of operations
divided by the number of operations in the sequence. See [32] for a general discussion of
amortization.

forest in O(1) time, and to determine the spanning tree containing a given
vertex, or find the edge of maximum or minimum weight on the tree path
between two vertices, in O(log m) time. The edge-ordered tree also finds use
in the on-line planarity testing algorithm of Di Battista and Tamassia [2, 3].
Thus our data structure is fairly general and powerful. The algorithms can
be made to run in worst-case time O(log m) with the biased tree implemen-
tation of dynamic trees [26]. We also argue that in our machine model, any
algorithm must spend Q(logn) amortized time per operation; we do this by
reduction to sorting.

Our algorithms do not solve the dynamic minimum spanning tree prob-
lem when we allow the following dynamic operations on planar (rather than
plane) graphs: insert a new vertex; delete a disconnected vertex; delete an
edge; and insert an edge if the resultant graph remains planar. Our algo-
rithms use properties of planar embeddings, and even if planar graph G can
be derived from another GGy by a single edge addition, a non-constant num-
ber of modifications to the subdivision that embeds G; may be required to
build a subdivision that embeds G3. Currently no solution for this problem
is known that achieves sub-linear time per dynamic operation.

2 Background

In this section we describe our graph representation and the basic algorithms
and operations we use.

2.1 Planar Subdivisions and Their Representation

A plane graph or subdivision S of the plane is a connected set of vertices
and edges that partition the plane into a collection of faces. S may have
loop edges or multiple edges between vertices. We are interested only in
the topology of S and do not consider the actual geometric positions of the
vertices and edges. Let G be a planar graph. An embedding of G generates a
collection of subdivisions, one for each connected component of the graph. If
(7 is triconnected then the topological structure of its embedding is unique up
to mirror image [14, pp. 105], but in general there are multiple embeddings
possible for a given planar graph. Using the topological incidence relationship
between edges and faces of S, we define the dual graph G* = (F, E*) [14].
Each face of S gives rise to a vertex in F. Dual vertices f; and f; are
connected by a dual edge e* whenever primal edge e is adjacent to the faces
of S corresponding to f; and f;. The dual graph can be embedded in the
plane by placing each dual vertex inside the corresponding face of S, and
placing dual edges so that each one crosses only its corresponding primal

Figure 1: A subdivision (black) and its dual (grey).

edge. This embedding is called the dual subdivision S*. Figure 1 gives an
example of a subdivision and its dual.

Guibas and Stolfi [13] propose the following notation (and corresponding
data structure) for describing a subdivision S. Each undirected edge e =
{u,v} of the S can be directed in two ways. If e is the directed version
of e originating in u and terminating in v, then sym(e) is the version of e
directed from v to u. Note that if e is a loop edge, u and v are identical, but
we may still define e and sym(e) as oppositely directed versions of the same
undirected edge. The operator orig(e) gives the vertex at which directed
edge e originates. Thus we can use directed edges to specify vertices of G.
Each directed edge has a left and right face as we look along its direction.

As in the primal subdivision, each undirected dual edge generates two
directed edges of S*; the sym and orig operators are extended to these dual
directed edges. The operator rot(e) gives the dual directed edge that origi-
nates in the right face of e and terminates in the left face, i.e., it is e rotated
90° counterclockwise. Similarly, rot™'(e) is the directed dual edge from the
left face of e to the right face of e. For a given undirected edge e in the
primal subdivision S, we denote the two pairs of primal and dual directed
edges by eg, €1, €2, €3, where eq is a primal directed edge and €;41mods =rot(e;),
0<:<3.

The edge ring of a vertex v is a circular list of the directed edges originat-
ing at v, organized in counterclockwise order around v. By nezt(e) we denote

the directed edge following e in counterclockwise order around orig(e), and
by next~!(e) the edge preceding e in counterclockwise order. If v has only
one incident undirected edge e, then its edge ring contains the single directed
edge e originating at v, and nezt(e) is e. On the other hand, for a loop edge
e both e and sym(e) belong to the edge ring of vertex orig(e).

Next, we discuss the implementation of dynamic operations that affect
the structure of planar subdivisions. Guibas and Stolfi [13] introduce two
modification primitives, make edge, which increases the complexity of the
structure by adding new unconnected vertices and edges, and splice, which
changes the topology of the structure but does not increase its complexity.
The primitives are very flexible and can be used to build more complicated
dynamic operations, such as contraction along an edge. We later use these
primitives in our main result.

In general, we maintain a collection of subdivisions and their duals. Each
subdivision is thought of as lying in a distinct plane. The make edge prim-
itive, which takes no parameter, creates two new vertices connected by a
new single edge e. The edge and its endpoints form a new subdivision that
is embedded along with its dual in a new plane. The make edge primitive
returns the directed edge eg. The inverse operation, destroy edge(e), takes
as an argument an edge that is guaranteed to be disconnected. The edge is
destroyed and the storage is released.

The second primitive is splice(d, e), where d and e are directed edges of
the primal subdivision. Splice operates on the vertices orig(d) and orig(e),
and independently on the dual vertices corresponding to the left faces of d
and e, which are given by orig(rot™'(d)) and orig(rot=*(e)). If the edges
originate in the same vertex, then the splice operation splits that vertex in
two, with the edges clockwise from d to e going to one of the halves, while
the remaining edges go to the other. If the edges have different origins,
then the two vertices are combined into one by inserting the edge ring of
one vertex into the edge ring of the other. Figure 2 gives an example. Let
6 = rot(next(d)) and € = rot(next(e)). The splice simply exchanges the
values of next(d) and next(e), while simultaneously exchanging the values of
next(6) and next(e).

The values given by the next, orig, and rot operators determine incidence
relations between the faces, edges, and vertices of S. In turn, these incidence
relations determine the topology of the surface that S subdivides. Since
splice(d, e) changes the values of next(d) and next(e), the choice of d and e is
restricted by the requirement that the result of the splice remain a subdivision
of the plane. Any splice is allowed in which d and e have the same origin
or left face, because the splitting of a vertex in either the primal or dual
preserves planarity, and if one subdivision remains planar then its dual must
also remain planar. If both the origins and the left faces differ, however,

@ (b)

Figure 2: a) Example of edge rings. Primal vertices v and v lie on
the boundary of face f. b) Edge rings and topology produced by
executing splice(a, b) (or equivalently, splice(x,y)) on edge rings of

(a).

and the two edges are contained in the same subdivision, then the splice is
disallowed. Such a splice increases by one the genus of the surface that S
subdivides. On the other hand, if the edges lie in different subdivisions, i.e.
different planes, the splice is allowed. In this case, the splice merges the two
subdivisions so that they are contained in a single surface. Given S, it is
always possible to draw a subdivision that is topologically equivalent to S
but in which some specified edge or vertex is adjacent to the exterior face.
Thus the splice of edges contained in different subdivisions can be thought of
as redrawing the subdivisions to place the edges on the exteriors, and then
plugging the subdivisions together at the origins of these edges. The validity
of a splice or destroy edge operation can be tested using the data structure
we present in the next section.

Let S be a subdivision containing m edges. Any undirected edge e
can be deleted from S by taking one of its directed versions e and exe-
cuting splice(e,next™(e)) and splice(sym(e), next™!(sym(e))), followed by
destroy edge(e). Thus a sequence of O(m) splices and destroy edges reduces
S to the null subdivision. Since splice is reversible (in fact, splice is its
own inverse), we may conclude that the operations make edge and splice
are sufficient to generate any planar subdivision not consisting of a single
isolated vertex. Furthermore, we see how to use make edge and splice to
implement more complicated dynamic operations. For example, the oper-
ation insert edge(d,e), which inserts an edge between orig(d) and orig(e),
dividing the face to the left of d and e, can be implemented by x =make edge
followed by splice(d, z) and splice(e, sym(z)). We can similarly implement
other standard operations such as delete edge, expand, and contract (see [29]).

Let G denote the planar multigraph induced by the vertices and edges of a
collection of subdivisions. Each subdivision induces a connected component
of G. We may use make edge and splice to generate any multigraph G not
containing isolated vertices. (New vertices are always created by make edge
in pairs, connected by the new edge. If one wishes to allow isolated vertices,
they can very easily be handled.)

2.2 Changing Edge Weights Only

For the sake of completeness we first consider the restricted problem in
which the topology of S is fixed and the only modification permitted is
change weight(e, A). The approach used and the result obtained are due
to Gabow and Stallmann [11, Corollary 3.1]. We present them here using
our notation and in a more detailed fashion; this will help in the description
of our own results.

The algorithm uses both S and its dual S*. For each dual edge we define
w(e*) = w(e). The following lemma (theorem XI.6 of [33]) is the basis for

Figure 3: Primal and dual spanning trees for the subdivision of
Figure 1

the algorithm.

Lemma 1 [33, pp. 289] Given a spanning tree T' for S, let T* be the set of
dual edges {e* | e is not in T }. Then T* is a spanning tree for S*.

If w(T') is the sum of the weights of the edges in T', and W is the sum of
the weights of all edges in S, we have that W = w(T') + w(T™*). Thus T is a
minimum spanning tree for S if and only if 7™ is a maximum spanning tree
for 5.

Figure 3 gives an example of primal and dual spanning trees for the
subdivision of Figure 1.

The algorithm maintains 7" and 7™ in tandem. Lemma 1 implies that
after a change in edge weight, correct updating of the primal spanning tree
automatically results in correct updating of the dual, and vice versa. To
perform the updates efficiently, the dynamic tree data structure of Sleator
and Tarjan [26, 27] is used. Dynamic trees are designed to represent a forest
of rooted trees, each node of which has a real-valued cost, under the following
operations:

make node: Make a new tree node with no incident edges and an initial cost
of —o0.

find cost(v): Return the cost of node v.
find root(v): Return the root of the tree containing node v.

find min(v) (find maz(v)): Return the node of minimum (maximum) cost on
the path from v to r, the root of the tree containing v.

add cost(v, A): Add real number A to the cost of all nodes on the path from
v to r, the root of the tree containing v.

link(v,w): Add an edge from v to w, thereby making v a child of w in the
forest. This operation assumes that v is the root of one tree and w is in
another.

cut(v): Delete the edge from v to its parent, thereby dividing the tree con-
taining v into two trees.

evert(v): Make v the root of its tree by reversing the path from v to the
original root.

find parent(v): Return the parent of v, or null if v is the root of its tree.
find lea(u,v): Return the least common ancestor of nodes u and v.

All the above operations can be performed in O(logn) amortized time
per operation and O(n) space, where n is the number of nodes in the tree or
trees to which the operation applies.

The vertices of S are represented by dynamic tree nodes with cost —oo.
Similarly, the vertices of S* are represented by dynamic tree nodes with cost
+o00. In T the operation find maz is used, while in 7™ the operation find min
is used. The roots of T" and 7™ are chosen arbitrarily. For every edge e there
is a dynamic tree node € of cost w(e). If e is a spanning edge of T' then
there is an edge between the tree node representing the vertex orig(eg) and
€, and an edge between € and the tree node for orig(ey). Conversely, if e* is
a spanning edge of T, then tree edges join orig(e;) to €, and € to orig(es).
Thus e is represented by two edges connected through the degree-two node é.
This representation allows find max and find min on T and T* respectively
to return edges rather than vertices.

For each edge e, the five values of é and orig(e;),0 < ¢ < 3, are stored
in the form of pointers to the corresponding dynamic tree nodes. If the
subdivision has O(m) edges the number of vertices and faces is also O(m),
and so the total space required for the trees is O(m).

To process change weight(e, A), we first update the edge weight by exe-
cuting evert(€) and add cost(é, A). Four cases can occur:

10

1. eisin 7" and A is negative.
2. eisnot in T (e* is in 7%) and A is positive.
3. eis not in 7" and A is negative.

4. eisin T and A is positive.

Clearly, Cases 1 and 2 have no effect on the spanning trees. Now consider
Case 3. It is well-known (e.g. see [10, 30]) that in this case 7" is no longer
minimum if the weight of e is less than the weight of the maximum-cost
edge d in the cycle formed by adding e to 7. Edge d is found by executing
evert(orig(eo)) followed by find maz(orig(ez)). In the special case where the
find maz operation returns —oo, processing terminates immediately. This
case occurs when orig(eg) =orig(ez); that is, e is a loop edge that can never
be a spanning edge, while the dual edge e* is a bridge of G* that must always
be a spanning edge.

In any case, if w(e) > w(d), no action need be taken. If not, however,
then the new minimum spanning tree 7' is given by deleting edge d and
inserting edge e. Simultaneously, the new maximum spanning tree 7™ is
given by deleting edge e* and inserting edge d*. This is done by executing
the following operations:

evert(orig(dy)); cut(aAl); cut(orig(dz));
evert(orig(er)); cut(é); cut(orig(es));

followed by:

evert(orig(eo)); link(€, orig(eo)); link(orig(es), é);
evert(orig(dy)); link(d, orig(dy)); link(orig(ds),d);

Since only a constant number of links, cuts and everts are required, the
amortized time for the change weight operation is O(log m).

Now consider Case 4. Let (V1,V2) be a partition of the vertices of G.
The cut induced by (Vi, V3) is the set of edges of G with one endpoint in V}
and the other in V5. Again, it is well-known that, in Case 4, T' is no longer
minimum if the weight of e is greater than the weight of the minimum-cost
edge in the cut induced by the partition (V;,V2), where V] and V; are the
vertex sets of the connected components of 7' created by the removal of edge
e. Given only the primal tree, this cut edge is hard to find. The utility of the
dual spanning tree becomes clear, however, when it is observed that Case 4
is the equivalent in the dual tree of Case 3 in the primal tree. A dual edge
not in 7™ has increased in cost, and may therefore force a dual edge out of
T™. The same processing as in Case 3 can be applied, interchanging the role

11

of dual and primal tree, and using find min rather than find maz. Thus Case
4 can also be handled in amortized time O(log m).

Thus, the result from [11] is that when given S, a subdivision of the plane
undergoing on-line changes in edge weight, a minimum spanning tree of S can
be maintained in O(logm) amortized time per operation and O(m) space,
where m is the number of edges.

The above time bound can be made worst-case with the biased tree im-
plementation of the dynamic tree data structure [26].

Let G be a plane graph of n vertices (and hence O(n) edges) undergoing
changes in edge weight. Note that the planar embedding can be generated in
O(n) time using one of the algorithms of Hopcroft and Tarjan [16] or Booth
and Lueker [4] (see Chiba, Nishizeki, Abe, and Ozawa [6]). Each connected
component gives rise to a planar subdivision. The initial spanning trees can
be found in O(n) time with the algorithm of Cheriton and Tarjan [5]. Thus,
given O(n) preprocessing time, one can maintain the minimum spanning
forest of G in O(logn) amortized time per operation and O(n) space.

3 Edge-ordered Trees and a Fully Dynamic
Algorithm

In this section we present our main result, the fully dynamic algorithm. We
first develop the edge-ordered dynamic tree, a data structure designed to
handle splices and the resultant cutting and linking of edge rings efficiently.
An edge-ordered tree is a general rooted tree in which a total order is imposed
on the edges adjacent to each given node (including the parent edge). The
ordered set of edges adjacent to node v is called the edge list for v. For
example, in our application we will use the counterclockwise ordering of the
edges around the vertex in the current graph embedding, with an arbitrary
edge first. Each node v in the tree has a real-valued cost, cost(v). The edge-
ordered tree supports the following collection of operations (we use capitals
to distinguish them from the corresponding dynamic tree operations):

Link(v,w): Add an edge e from v to w, thereby making v a child of w in
the forest (v is assumed to be a root). The new edge is inserted at the end
of the edge list of v and at the front of the edge list of w. Return e.

Split(v,e): Split node v into two nodes v’, v". If aef is the ordered list of
edges adjacent to v then ae becomes the ordered list of edges adjacent to v’,
while 3 becomes the ordered list adjacent to v”. Nodes v’ and v” have the
same cost as v.

Merge(u,v): Merge nodes u and v into a single node w. If « is the ordered

12

list of edges for v and 3 is the ordered list of edges for v then af is the
ordered list of edges for w. Nodes u and v must have the same initial cost.
Return w.

Cycle(v,e): Cyclically permute the order of edges adjacent to v so that e is
the last edge in the order. The initial ordered list aef becomes Bae.

Add cost(v,x): Add real value x to cost(v). Note that this differs from the
definition of add cost in [26, 27], since only node v is affected by the operation.

The edge-ordered tree data structure also supports Fvert(v), Cut(v),
Find cost(v), Find root(v), Find min(v) (Find maxz(v)), Find parent(v), and
Find lca(u,v). These operations have the same definitions as the analogous
(lower-case) operations that were defined in Subsection 2.2.

To implement the edge-ordered tree we do not create a completely new
data structure; rather, we show how to transform any given tree 7' into a
new tree 7”. Each node v of T' is expanded into a collection of subnodes
called a node path. Each subnode s has a cost that is always set equal to
cost(v). There is one subnode in the node path v for every edge e in the edge
list of v. The subnode for e is connected by tree edges to the subnodes of
its predecessor and successor in the edge list. The subnodes for the first and
last edges in the list are connected only to their successor and predecessor
respectively. For each vertex v there is an auxiliary block of storage that
contains pointers to the first and last subnodes, denoted vy;.5 and vjqs:. We
assume the existence of routines Make node and Destroy node(v) that create
and destroy this auxiliary storage. A node is referenced by a pointer to this
storage block. Whenever an edge e connects nodes u and v in 7', there is an
edge in 7" between the two subnodes s, and s, generated by e in the node
paths of v and v. Edge e is referenced by one of its endpoints {s,,s,} as
appropriate. Thus, to split node v at edge e, we execute Split(v, s,).

If T has n nodes and hence n — 1 edges, then T" has 2n — 2 nodes. Note
that every node in 7" has degree at most three. A similar idea has been
used by Goldberg, Grigoriadis and Tarjan [12] in a different extension of
dynamic trees that supports computing minima and maxima over subtrees.
(Our extension requires some additional ideas.) Figure 4 gives an example
of an edge-ordered tree.

The transformed tree 7" is maintained with a standard Sleator-Tarjan dy-
namic tree. The node path for node v has the property that if evert(viqs:) is
performed, then the ordered sequence of nodes on the tree path between v,
and vy, corresponds exactly to the ordered sequence of edges in the edge list
from first to last. This property allows the processing of all the edge-ordered
tree operations with only a constant number of dynamic tree operations. If

13

2 @ @ & °

Figure 4:

for vertex 1 is: (1,2),(1,3),(1,4),(1,5).

3
® @ ® roe
6
(b)
a e-ordered tree — the actual tree. e list
Edg dered h | Edge li

Edge list for vertex 3 is:

(3,6),(3,7),(3,1),(3,8). (b) Tree of (a) transformed into node path

representation. Dark edges correspond to true tree edges.

14

we only need to perform the operations Link through Find cost, the dy-
namic tree suffices. To perform C'ut, the node paths must also be threaded
into a doubly-linked list, and to perform Find min, Find parent, Find lca,
and Find root auxiliary balanced trees are required. We begin by giving
implementations of the edge-ordered tree operations in the first group. For
convenience, we will use the notation e to represent both an edge and the
appropriate corresponding tree subnode.

Link(u,v) begin
x :=make node; y :=make node;
evert(Uigst);
link(uigse, ©); link(z,y); ink(y, virs);
Ulast 1= T3 Vfirst 1= Y
return Xx,y;

end

Split(u, e) begin
v :=Make node; w :=Make node;
evert(Ugst);
if find lca(wysirst,€)# € then error (e not in node path of v);
y := findparent(e);

cut(e);
Ufirst += Ufirsty Vlast +— €3
Weirst +— Y5 Wiast += Ulast

Destroy node(u);
return v, w;
end

Merge(u,v) begin
w :=Make node;
evert(Uigst);
link(wigst, Vsirst);
Wiirst «= Ufirsty Wiast += Vlast;
Destroy node(u); Destroy node(v);
return w;

end

15

Cycle(v, e) begin
evert(vigst);
if find lca(uysirst, €)# € then error (e not in node path of v);
if ¢ = v, then return;
x :=find parent(e);

cut(e);
Zink(vlasta ‘Ufirst);
Ufirst +— Ly Vlast +— €,

end

Add cost(v, A) begin
evert(vigst);
add cost(vgipst, A);

end

The operations Fvert(v) and Find cost(v) are simply implemented by
evert(vies:) and find cost(vist), respectively. If the tree is to be rooted at
node r, then those operations whose implementation uses an evert must be
followed by a final evert(riys:).

If the operation C'ut(v)is needed, we thread each node path into a circular
doubly-linked list. We denote the predecessor and successor of subnode s by
pred(s) and succ(s).

Cut(v) begin
z = find lea(virst, Vigst);
y 1= find parent(x);
cut(z);
for s in {z,y} do begin
evert(suce(s)); cut(s);
cut(pred(s)); link(pred(s), suce(s));
succ(pred(s)) := suce(s); pred(suce(s)) := pred(s);
end
end

Note that in order to maintain the node path linked lists, each link or
cut that occurs in the implementation of the first group of operations must
be followed by the appropriate operation on the linked list. After the edge is
cut, the storage used by the two subnodes z,y, which are no longer needed,
is reclaimed.

To include Find min(v), Find parent(v), Find lca(u,v), and Find root(v)
in the repertoire of edge-ordered tree operations, we need the operation
Find node(s), which given subnode s returns the node v whose node path
contains s. By maintaining each node path in an auxiliary balanced binary

16

tree such as a red-black tree or splay tree (see [31, pp. 45-53]), Find node(s)
can be performed in O(logn) time, either worst-case or amortized, depend-
ing on the choice of data structure. Again, appropriate insertions, deletions,
splits and concatenations must be done in the auxiliary data structure when
operations such as link or cut occur in the implementation of the first group
of tree operations. The balanced trees mentioned above support insertions,
deletions, splits, and concatenations in O(logn) time.
Using Find node, we implement the remaining operations as follows:

Find min(v) begin
return Find node(find min(vy;,s:)); end

Find parent(v) begin
return Find node(find parent(find lea(vfirst, Viast))); end

Find lca(u,v) begin
return Find node(find lea(ugirst, vsirst)); end

Find root(v) begin
return Find node(find root(vi,s)); end

Since each edge-ordered tree operation is implemented using a constant
number of dynamic tree operations, the overall amortized running time per
operation remains O(logn).

We now discuss the application of edge-ordered trees to the minimum
spanning tree maintenance problem. Let G denote the multigraph induced
by the vertices and edges of a collection of subdivisions, and let G* denote
the multigraph given by their duals. As in Subsection 2.2, the vertices of G
are represented by tree nodes of cost —oo and the vertices of G* by nodes of
cost +o00.

We wish to ensure that each directed edge e is represented in the edge
list of the node v = orig(e). To do this, we create a dummy node é of cost
w(e), and make it a child of v. With e we store the pair of subnodes that
represent e in the node paths of v and é. This allows the use of Find node
to determine orig(e) and é. The counterclockwise order of directed edges
around v determines the linear order in the edge list of v; the first edge in
the linear order is chosen arbitrarily.

If e is a spanning edge of G then the dummy nodes for ey and ey are
merged to give a degree-two node representing e that connects nodes u =
orig(eg) and v = orig(ez). Similarly, if e* is a spanning edge of G*, then

17

(@) (b)

Figure 5: a) Node path for vertex d of the spanning tree of Figure
2. Each subnode is labeled by the vertex to which it is adjacent.
Unlabeled squares are €; nodes. b) Node path for d after executing

Cycle(d,e), where e = {d, a}.

the dummy nodes for e; and e3 are merged. There are O(m) tree nodes, so
the total space required is O(m). Note that each loop edge gives rise to two
sibling dummy nodes, one for each directed version of the loop. Figure 5
gives an example of a node path.

The algorithm given in Subsection 2.2 for change weight operations can be
adapted for use with edge-ordered trees. If non-spanning primal edge e de-
creases in weight, we find the edge d of maximum weight on the path connect-
ing the endpoints of e by executing Evert(orig(eo)) and Find maz(orig(ez)).
Edge d is represented in T' by a degree-two node u with incident edges cor-
responding to dy and dy. To replace edge d by edge e in the primal spanning
tree, we perform Split(u, ug;s) followed by Merge(eo, 62) Similarly, we split
the node w representing €* in 7, then merge dy and d.

A make edge request creates two new vertices in the primal graph, con-
nected by a new edge e with w(e) = —oo. Simultaneously, the dual graph
is augmented by a single vertex with the incident loop edge e*. The primal

18

O— @

e3

el

@ (b)

Figure 6: a) Primal (black) and dual (grey) subdivisions produced
by e =make edge. b) Primal and dual edge-ordered trees for subdi-
visions of (a).

edge e is automatically a spanning edge of G. To satisfy the request, the
algorithm allocates storage for a new primal/dual spanning tree pair. The
primal tree T' consists of two singleton node paths connected through a node
that is the merge of €y and é;. The dual tree 7™ consists of a node path
containing two subnodes, with children é; and é3. (See Figure 6.)

A splice(d, e) operation has more complicated behavior. The most com-
plex situation occurs when directed edges d and e have distinct origins but
the same left face (or symmetrically, the same origin but distinct left faces.)
Let 6 and € be the dual directed edges given by rot(next(d)) and rot(next(e))
respectively. Combining the vertices u = ortg(d) and v = orig(e) into a sin-
gle vertex will create a cycle in the primal spanning tree. This cycle is broken
by removing the edge x of maximum weight on the cycle. The algorithm for
processing a change weight request can be used to find x. Splitting of the
face f = orig(6) = orig(e) breaks T* into two fragments. They are then
joined together by linking in the edge x*. Thus the tree modifications caused
by the splice are equivalent to those occurring if initially the two vertices had
been joined by an edge that changed weight from 400 to —oc. The specific
processing is as follows:

1. As discussed above, find x and perform Split(x, f;5¢). This breaks T'
into two fragments.

2. Reconnect the two fragments of T' with Cycle(u,d), Cycle(v,e), and
Merge(u,v).

19

3. Perform Cycle(f,6) and Split(f,e).
4. Reconnect the two fragments of 7™ with Merge(z1,23).

The processing for the other cases of splice(d,) is simpler. If both edges
have the same origin v and left face f, then v is an articulation point of G.
The splice breaks one subdivision into two subdivisions of distinct surfaces
and correspondingly breaks one component of G into two components. The
two fragments into which 7" is broken by the splice remain valid minimum
spanning trees for the new components, since 7' previously spanned the entire
graph, and the fragments were connected only through v. Therefore we need
only execute the cycle and split of Step 3 above, once on the primal edges d,
e and vertex v, and once on the dual edges 6, € and face f.

Similarly, if the edges belong to different components, and hence dif-
ferent subdivisions of distinct surfaces, then the splice operation joins the
components through a new articulation vertex w given by the merge of
u = orig(d) and v = orig(e). The two dual components are simultaneously
joined through a vertex h given by the merge of f = orig(6) and g = orig(e).
By assumption, the two initial components are correctly spanned, so by com-
bining the two vertices a valid minimum spanning tree for the unified graph
is created. Therefore, in this case we need only execute the cycles and merge
of Step 2, once on u, v, d and e, and once on f, g, 6 and e.

The make edge operation requires constant time, while each splice per-
forms a constant number of edge-ordered tree operations, each of which re-
quires O(logm) amortized time per operation, where m is the number of
edges in the subdivision.

Theorem 1 The minimum spanning tree of a planar subdivision undergoing
both changes in edge weight and changes to its structure can be maintained
in O(log m) amortized time per operation and O(m) space.

Again, the time bound can be made worst-case by using the biased-tree
implementation of dynamic trees [26].

We note that, given a minimum spanning tree, we can answer connectivity
queries, such as find(u,v), which asks if vertices v and v are in the same
component of G, by taking representative subnodes in the vertex paths for
v and v and finding the roots of the spanning trees containing them. (This
query can be used to check the validity of splice operations.)

The data structure we have presented encodes the entire structure of the
subdivisions. The entire range of dynamic tree operations described above
and in references [26, 27| is available for use with the spanning trees, making
the overall data structure quite powerful and flexible.

20

4 A Lower Bound

Let A be an algorithm for maintaining a minimum spanning tree of an ar-
bitrary edge-weighted (multi)graph . Let A be such that the operation
change weight(e, A) returns the edge f that replaces e in the minimum span-
ning tree, if e is replaced. Clearly, any dynamic minimum spanning tree
algorithm A’ can be modified to return f (furthermore, all known algorithms
compute f as part of the change weight routine). One can use algorithm A
to sort m positive numbers z, 3, ..., x,. Simply construct a multigraph G
consisting of two nodes connected by n + 1 edges ey, ..., e,, such that edge
ep has weight 0 and edge e; has weight x;. The initial spanning tree is eg.
Increase the weight of eq to +oo (i.e., to something larger than the sum of
the x;’s). Whichever edge replaces eq, say e;, is the edge of minimum weight.
Now increase the weight of e; to +o00; the replacement edge of €; is the edge
of second smallest weight. Continuing in this fashion gives the numbers in
sorted order.

Similarly, suppose only decreases in costs are allowed. Form a cycle of
n + 1 edges, e1,..., e, of weight z1,...,z,, respectively, and eq with weight
+00. The initial spanning tree is the edges eq,...,e,. Decrease the weight
of ey to —oo. Whichever edge leaves the tree is the edge of largest weight.
Repeatedly lowering the weight of the remaining edge of largest weight gives
the numbers sorted in reverse order.

Paul and Simon [22] have shown that any unit-cost random access sort-
ing algorithm whose operations include addition, subtraction, multiplication,
and comparison with 0, but not division or bit-wise Boolean operations,
takes Q(nlogn) worst-case time to sort n numbers. The currently known
algorithms for maintenance of a minimum spanning tree fit into this model.
Thus the O(log n) amortized time per operation of our algorithm can only be
improved by taking advantage of a more powerful computational model, or
by avoiding the computation of the replacement edge f following each edge
cost update (that is, avoiding an explicit representation of the current tree).

Since the reduction to sorting uses only edge weight changes, the lower
bound is also applicable to algorithms for the static subdivision version of
the problem; hence the Gabow-Stallmann result is also optimal within the
above machine model.

5 Discussion

In implementing edge-ordered tree operations we used balanced trees as aux-
iliary data structures to maintain the node paths while performing splits
and merges. These auxiliary data structures are used primarily to answer
find node queries in logarithmic time. In fact, Sleator-Tarjan dynamic trees

21

may also be used as the auxiliary data structures, with each edge list main-
tained as a linear branch always rooted at the head node. This suggests
that it may be possible to combine the auxiliary functions into the primary
dynamic tree and eliminate the auxiliary data structures entirely. We are
currently unable to do so, however.

In our approach to the dynamic spanning tree problem, modification op-
erations are specified by edges. Tamassia [29] gives a data structure for
maintaining a dynamic embedding of a biconnected planar graph that can
test in O(logn) time whether two vertices u and v lie on a common face.
With this auxiliary data structure we can allow some modifications to be
specified in terms of vertices. For example, we can support insert edge(u,v),
which inserts an edge between vertices v and v if they lie on a common face,
by using Tamassia’s data structure to find the two edges that are adjacent
to a common face and have as origins u and v respectively. These edges can
then be used as input to splice.

Our planar subdivision algorithms can be used to maintain planar graphs,
but the modifications permitted are limited by the embedding and thus fit
applications where the embedding is given. Even if one planar graph (7 can
be derived from another Gy by a single edge addition, a large number of
modifications to the subdivision that embeds G; may be required to build
a subdivision that embeds (5. From a theoretical point of view, however,
it would be more satisfying to have an algorithm that allowed the following
operations: insert a new vertex; delete a disconnected vertex; delete an edge;
and insert an edge if the resultant graph remains planar. If such an algorithm
were based on the primal/dual spanning tree relationship, however, then
it would need to move quickly (i.e., in O(logn) amortized time) between
topologically distinct embeddings. In recent work Di Battista and Tamassia
[2, 3] give data structures and algorithms that can do this in O(logn) time
in the restricted case that only edge insertions are allowed. If a modification
primitive powerful enough to allow edge deletions is allowed, however, the
problem becomes significantly more difficult, and currently no solution better
than repeated application of a static planarity-testing algorithm is known.

References

[1] G. Ausiello, G. F. Italiano, A. M. Spaccamela, and U. Nanni. Incre-
mental algorithms for minimal length paths. In Proc. 1st ACM-SIAM
Symp. on Discrete Algorithms, pages 12-21, 1990.

[2] G.D. Battista and R. Tamassia. Incremental planarity testing. In Proc.
30th IEEE Symp. on Foundations of Computer Science, pages 436-441,
1989.

22

3]

[10]

[11]

[14]
[15]

[16]

G. D. Battista and R. Tamassia. On-line planarity testing. Technical
Report CS-89-31, Department of Computer Science, Brown University,
19809.

K. Booth and G. Lueker. Testing for the consecutive ones property, in-
terval graphs, and graph planarity using PQ-tree algorithms. J. Comput.
System Sci., 13:335-379, 1976.

D. Cheriton and R. E. Tarjan. Finding minimum spanning trees. SIAM
J. Comput., 5:724-742, 1976.

N. Chiba, T. Nishizeki, S. Abe, and T. Ozawa. A linear algorithm
for embedding planar graphs using PQ-trees. J. Comput. System Seci.,
30:54-76, 1985.

F. Chin and D. Houck. Algorithms for updating minimum spanning
trees. J. Comput. System Sci., 16:333-344, 1978.

S. Even and H. Gazit. Updating distances in dynamic graphs. Methods
of Operations Research, 49:371-387, 1985.

S. Even and Y. Shiloach. An on-line edge deletion problem. J. ACM,
28:1-4, 1981.

G. N. Frederickson. Data structures for on-line updating of minimum
spanning trees, with applications. SIAM J. Comput., 14:781-798, 1985.

H. N. Gabow and M. Stallmann. Efficient algorithms for graphic matroid
intersection and parity (extended abstract). In Automata, Languages,
and Programming, 12* Colloquium, Lecture Notes in Computer Science,
vol. 194, pages 210-220. Springer-Verlag, Berlin, 1985.

A. V. Goldberg, M. D. Grigoriadis, and R. E. Tarjan. Use of dynamic
trees in a network simplex algorithm for the maximum flow problem.
Math. Prog., to appear.

L. J. Guibas and J. Stolfi. Primitives for the manipulation of general
subdivisions and the computation of voronoi diagrams. ACM Trans. on

Graphics, 4:74-123, 1985.
F. Harary. Graph Theory. Addison-Wesley, Reading, MA., 1972.

D. Harel. On-line maintenance of the connected components of dynamic
graphs. Unpublished manuscript, 1982.

J. Hopcroft and R. E. Tarjan. Efficient planarity testing. J. ACM,
21:549-568, 1974.

23

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

28]

T. Ibaraki and N. Katoh. On-line computation of transitive closure for

graphs. Inf. Process. Lett., 16:95-97, 1983.

G. F. Italiano. Amortized efficiency of a path retrieval data structure.

Theoret. Comput. Sci., 48:273-281, 1986.

G. F. Italiano. Finding paths and deleting edges in directed acyclic
graphs. Inf. Process. Lett., 28:5-11, 1988.

G. F. Italiano, A. M. Spaccamela, and U. Nanni. Dynamic data struc-
tures for series parallel digraphs. In Proc. Workshop on Algorithms and
Data Structures, (WADS 89), Lecture Notes in Computer Science, vol.
382, pages 352—-372. Springer-Verlag, Berlin, 1989.

J. A. La Poutré and J. van Leeuwen. Maintenance of transitive closure
and transitive reduction of graphs. In Proc. International Workshop
on Graph-Theoretic Concepts in Computer Science, (WG 87), Lecture
Notes in Computer Science, vol. 314, pages 106-120. Springer-Verlag,
Berlin, 1988.

J. Paul and W. Simon. Decision trees and random access machines. In
Symposium uber Logik und Algolrithmik, 1980. Also in K. Mehlhorn,
Sorting and Searching, pages 85-97, Springer-Verlag, Berlin, 1984.

F. P. Preparata and R. Tamassia. Fully dynamic techniques for point
location and transitive closure in planar structures. In Proc. 29th IEEE
Symp. on Foundations of Computer Science, pages 558-5H67, 1988.

J. H. Reif. A topological approach to dynamic graph connectivity. Inf.
Process. Lett., 25:65-70, 1987.

H. Rohnert. A dynamization of the all pairs least cost path problem. In
Proc. 2nd Annual Symp. on Theoretical Aspects of Computer Science,
(STACS 85), Lecture Notes in Computer Science, vol. 182, pages 279-
286. Springer-Verlag, Berlin, 1985.

D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees. .J.
Comput. System Seci., 26:362-391, 1983.

D. D. Sleator and R. E. Tarjan. Self-adjusting binary search trees.
J. ACM, 32:652-686, 1985.

P. M. Spira and A. Pan. On finding and updating spanning trees and
shortest paths. SIAM J. Comput., 4:375-380, 1975.

24

[29]

[30]

31]

32]

33]
[34]

R. Tamassia. A dynamic data structure for planar graph embedding.
In Proc. 15th Int. Conf. on Automata, Languages, and Programming,
(ICALP 1988), Lecture Notes in Computer Science, vol. 317, pages 576
590. Springer-Verlag, Berlin, 1988.

R. E. Tarjan. Sensitivity analysis of minimum spanning trees and short-
est path trees. Inf. Process. Lett., 14:30-33, 1982.

R. E. Tarjan. Data Structures and Network Algorithms. Society for
Industrial and Applied Mathematics, Philadelphia, PA., 1983.

R. E. Tarjan. Amortized computational complexity. SIAM J. Alg. Disc.
Meth., 6:306-318, 1985.

W. T. Tutte. Graph Theory. Addison-Wesley, Menlo Park, CA., 1984.

D. Yellin. A dynamic transitive closure algorithm. Technical report, IBM
Research Division, T. J. Watson Research Center, Yorktown Heights,
NY, 1988.

25

