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Abstract

In this paper, we apply algorithms for
defining regions from sets of points to the
problem of drawing isoglosses, the bound-
aries between dialect regions. We discuss
the justifications for our method, and al-
ternative models that could be constructed
from this data. We evaluate the resultant
model by comparison to the traditional
method of drawing isoglosses, by hand.

1 Introduction

In the linguistic subfield of dialectology, an impor-
tant activity is the drawing of isoglosses, or bound-
aries between dialect areas. It is often difficult to pin
down the meaning of these terms, as within a region
people come and go, and bring their speech with
them, but broadly speaking, an isogloss is a bound-
ary between where people speak like this and where
people speak like that. Typically, an isogloss will
not be a sharp line, but will be an area of overlap
between speakers of one type and the other.

Unfortunately, isoglosses are typically drawn by
hand, as an approximate dividing line. This leads to
two problems: one, they should not be thought of or
represented as lines, but rather as approximate tran-
sition zones, and two, they could be better drawn,
we think, by algorithm than by eyeballing. As the
noted sociolinguist William Labov writes,

Every dialect geographer yearns for an
automatic method for drawing dialect
boundaries which would insulate this pro-
cedure from the preconceived notions of
the analyst. No satisfactory program has
yet been written. (Labov et al., 2005)

We have therefore attempted, as something like a
proof-of-concept, to redraw the isoglosses for cer-
tain dialect differences in American English. We

have taken as our data the results of the telephone
survey of speakers across the contiguous USA done
for the Atlas of North American English (Labov et
al., 2005). To this data, we have applied a number
of algorithms from the field of computational geom-
etry, and hope that the result will better represent the
boundaries between dialect regions.

One way we expect that our method will improve
on a hand-drawn line is by clearly showing areas
that are thoroughly mixed. It can be tempting, when
drawing by hand, to mark an area as primarily speak-
ing one way, and drawing your line as though that
is the case. It may well be the case, however, that
in such situations, the region is much more evenly
mixed than it appears to the eye, and should proba-
bly not be marked decidedly in either direction. We
suspect that an algorithmic approach will see these
cases more clearly.

The clearest way to test whether our method im-
proves on a hand-drawn line would be to see if this
model has greater predictive power, such that if we
were to randomly make telephone calls to people,
their proximity to our lines would be a better indica-
tor of the features of their dialect. However, doing
so is outside the scope of the project. Other changes
to our method that would make it more explicitly
a predictive model, such as predicting the value for
a point based on the inverse-distance weighted av-
erage of the n-nearest neighbors,1 while interest-
ing, would also be outside the scope of this project.
Such an approach would really be a machine learn-
ing task, and not a cartographic task.

As such, our evaluation is limited to observing
in a qualitative way the differences between our
method and the hand-drawn method. We expect
that if there is no significant difference, this will at
least provide a way of automating the creation of
a machine-readable form, assuming data points are
available. If there is a significant difference, then

1As suggested by George Dahl.



perhaps more investigation into the predictive pow-
ers of the two models is warranted.

2 The data

The data from the Atlas of North American En-
glish (Labov et al., 2005) is in the form of approxi-
mately 600 points, identified geographically by ZIP
code, which we then converted to latitude and lon-
gitude coordinates. At each point, there was an in-
dication of whether the speaker at that point makes
or does not make each of a set of possible linguistic
distinctions. The data is generally denser around the
north east and Great Lakes regions, but this is in part
due to greater population density in these areas. Of
course, more datapoints would always be desirable,
but these data are still useful.

A dialect area can be considered an area of over-
lap between polygons from different feature sets,
where the area of overlap consists of most of the area
of the parent polygons. Thus, it is an area where,
at least with respect to the features under consid-
eration, people speak the same way, and that way
is distinct from the surrounding area. The scale of
this can vary, of course: a city may form a distinct
dialect area within a state, if it has sufficiently dif-
ferent speech, but there may also be dialect areas
within that city, which are each more like each other
than they are like the speech outside the city, but still
differ from each other.

The specific features which we mapped were the
following: whether the speaker distinguishes A and
O, whether the speaker distinguishes û and w, and
whether the speaker distinguishes I and E before a
nasal, such as n or m.2 These are a set of easily ex-
plicable features, with the first and third being gen-
erally considered to be characteristic of large US
dialects. For each feature, following the format in
the Atlas, a speaker could make the distinction, not
make the distinction, or be unclear — that is, the
interviewer was unable to tell whether they reliably
made or did not make the distinction. In all cases,
we used the interviewer’s judgment, rather than the
speaker’s self-reporting.

The scale of our project is across the contigu-
ous USA, so many smaller-scale regional variations
don’t show up. This is dependent on a number of

2These symbols are explained in Section 7.

parameters in the algorithm, and the size and gran-
ularity of the dataset. For example the data set and
our techniques might allow us to note the speech of
western Pennsylvania and West Virginia as distinct
from the area around it, but would not create a dis-
tinct region for the dialect of San Francisco and its
countryside.

3 Methods

Our goal of identifying dialect regions based on in-
dividual phoneme information required us to first lo-
cate areas where speakers pronounced a phoneme
similarly. For most phonemic variables in the Atlas
of North American English, the speakers with sim-
ilar pronounciation are not located all in one area.
This meant that for each feature setting, we had to
first break the data points up into several regional
groupings, which we did using k-means clustering.
Once we had clustered the data for a particular fea-
ture setting we found boundaries for the resulting
regions by computing the convex hulls of the data
points in each cluster. This gave us several polygons
describing regions in which a particular feature had
the same setting, so to find dialect regions we over-
laid these polygon sets and found regions of inter-
section. Each of these three steps is described in
detail below.

3.1 Clustering

To break the data points from a data set for a par-
ticular feature setting down into smaller groups, we
used k-means, a clustering algorithm proposed by
MacQueen (1967). The algorithm starts with k cen-
troids that can be specified as input or randomly se-
lected from the data points. Each data point is then
assigned to the nearest centroid, and each centroid is
adjusted to minimize the distance to all of its points.
Then the data points are again assigned to the clos-
est centroid, and the centroids are recomputed, and
so on. The algorithm terminates when an iteration
occurs in which no data points switched centroids.
The theoretical worst-case time complexity of the
k-means algorithm is superpolynomial (Arthur and
Vassilvitskii, 2006), but in practice it runs quite
quickly.

We considered a number of alternative cluster-
ing algorithms including faster heuristic-based or



approximate k-means implementations. We also
considered other more adaptive clustering algo-
rithms, like growing k-means or growing neural
gas (Daszykowski et al., 2002). The main advantage
to such techniques is that they would not require the
number of clusters to be specified in advance, but
instead start with very few centroids and add more
as needed. We decided against such methods after
considering the potential applications of our work.
First, if a user of our algorithm, say a linguist creat-
ing dialect maps, is unfamiliar with the details of the
implementation, it might be easier for him to spec-
ify starting-point centroids than to tune the param-
eters that control the termination point of growing
k-means or growing neural gas. Additionally, be-
cause our data come from an atlas with hand-drawn
isoglosses, we have available to us reasonably good
starting-point centroids to use in our testing.

3.2 Convex Hulls

After forming clusters, we computed the convex hull
of each set of clustered points, using a simple convex
hull algorithm, the Jarvis March. The algorithm uses
a “gift-wrapping” technique, starting from the left-
most point in the data set, and at each subusequent
step, scanning through all the remaining points to
find the one that makes the widest angle with the pre-
vious hull boundary-segment. This runs in in O(nh)
time, because each of h loops scans all of the input
points (de Berg et al., 1997). Non output-sensitive,
O(n log n), convex hull algorithms also exist and are
useful when h is close to n, resulting in n2 complex-
ity for Jarvis, but in our application, h tends to be
quite small relative to h, so the Jarvis March per-
forms marginally better.

When inspecting the first applications of our
convex-hull implementation to real data, we noticed
that the hulls were often significantly affected by a
few outlier points that weren’t particularly close to
any of the cluster centroids but our implementation
of k-means required that they be assigned to some
cluster. For example one data set had three clear
clusters in the northeast, the midwest, and the deep
south, plus a few extraneous data points in Califor-
nia. These California points caused the midwest-
hull to stretch halfway across the country (see figure
1).

To fix this, we tried two different methods. The

Figure 1: Convex hulls of point clusters for regions
where A and O are distinguished, without oulier re-
moval.

first was onion-peeling of the convex hulls, 3 which
would involve throwing out the points on the con-
vex hull and recomputing the convex hull of the re-
maining points (perhaps more than once). We found
this method ineffective because removing all out-
liers would sometimes require more than one onion-
peeling step, in which case some more-compact
clusters would be whittled away and no longer ac-
curately represent the data. We then tried, and were
satisfied with, calculating the outliers more explic-
itly. For each cluster, we computed the standard de-
viation of the distance from each point to the cen-
troid and removed all points more than some num-
ber of standard deviations4 away before computing
the convex hull.

3.3 Overlay

Finally, given the hulls for each cluster in a particu-
lar map, we overlaid them to find the common area
between, for example, the speakers who both make
the A/O distinction, and drop syllable-final r. By
overlaying hulls from different features, we could
identify regions of significant overlap, indicating di-
alect regions, and by overlaying hulls from different
settings of the same feature, we can determine bor-
der areas where common sets of linguistic features
cannot be readily described.

3Suggested by Andrew Danner.
4We found that 3 standard deviations produced good results.



Overlaying these regions requires first detecting
whether two polygons intersect. A method to do
this in O(log n) time was proposed by Chazelle and
Dobkin (1980), but is exceedingly difficult to imple-
ment, so we opted instead for an O(n2) algorithm
based on the leftTurn and rightTurn primitives we
had already implemented for computing the inter-
section. The idea is that if two polygons don’t inter-
sect, then there exists a dividing line between them,
and one such line must be a side of one of the poly-
gons. Therefore we can walk around the outside of
one polygon and determine for each side, whether
all points in the other polygon lie on the opposite
side of that line from the rest of its polygon. If so,
the polyogns don’t intersect; if no such line is found
after walking around both polygons, then the poly-
gons intersect.

Once we know that two polygons intersect, we
use a rotating calipers implementation provided by
Mary Wooters and George Dahl to compute bridge
points between them (Toussaint, 1983). Each of
these bridge points corresponds to a point of inter-
section between the two hulls at the other end of the
“sail polygon” (see figure 2), which we locate us-
ing the stepDown procedure outlined in Toussaint
(1985). Once we have located these intersection
points, finding the convex intersection of the two
polygons is simply a matter of walking around one
polygon and then the other, switching at each inter-
section point. Both rotating calipers and stepDown
run in time linear in the size of the polygons, as does
the final output step, so the whole overlay step runs
in worst-case O(k2 ∗ h) time, where k is the num-
ber of k-means centroids (and therefore the number
of polygons), and h is the number of points on the
polyogns being combined. In practice, k and h are
well under n

1
3 , so this works out to be no worse than

linear in the size of the overall data set.
To visualize the data, we used GRASS,5 mapping

our datapoints to latitude and longitude coordinates.

4 Results

The regions drawn by this method seem plausible
given our knowledge of the data sets we used. How-
ever, a rigorous test of the predictive power of this

5GRASS is an Open Source geographic information system,
available at http://grass.osgeo.org/.

Figure 2: The stepDown function iterates over a
“sail polygon” to find the intersection between two
polygons given a bridge-line between them.

model is not particularly feasible without more data.
One major difference is that this method produces

only convex polygons as dialect regions, and also
does not cover all the inhabited territory on the map.
Both of these facts imply something about how our
regions are to be interpreted: for a given feature, the
regions of no overlap with other settings for that fea-
ture are areas of high-confidence that there is one
dialect, areas of overlap are areas of confidence that
the speech is mixed there, and areas outside of poly-
gons are areas of insufficient data.

There were some moments when it was clear how
to hand-evaluate the algorithm. For example, be-
fore switching to standard-deviation hulls, we at-
tempted onion-skin hulls. This resulted in a hull that
stretched across the US from Wisconsin to south-
ern California, even after peeling off the first layer.
This was clearly an artifact of the processing, and
not reflective of a here-to-fore unobserved swath of
speakers who distinguish A and O; the greater part of
the polygon, as it stretched across the country, was
devoid of datapoints, having them all clustered at the
Wisconsin end.

5 Future Work

The clearest route for future work would be to de-
velop a metric with which to test the quality of a
dialect map. The purpose of such a map is presum-
ably as a predictive tool; as such, gathering larger
amounts of data, for distinct training and testing,



Figure 3: Overlaid convex hulls of clustered data. The red are areas where A and O are merged. The blue are
areas where I and E are merged before nasals.

would be ideal. However, collecting such data re-
mains time-consuming and difficult.

It has been suggested that an alternative approach
to this problem would be to treat it as a machine
learning task. One could imagine easily a learn-
ing system that would, given training data of geo-
graphic points classed by setting of linguistic fea-
tures, would produce the likeliest settings for lin-
guistic features, given testing data of just geographic
points. While such a system would be interesting,
and possibly very informative, it would not lend it-
self immediately to map-making, and was outside
the scope of this project.

6 Conclusions

It is difficult to evaluate the success of our algorithm
both because the Atlas is not conducive to a quanti-

tative comparison, and because testing our algorithm
against real-world data is impractical. The algorithm
seems to produce reasonable results, but a large part
of our ability to evaluate this is based, circularly, on
the maps available in the Atlas. Clearly, both more
data and a better means of evaluation would be de-
sirable.

7 Linguistic Appendix

A number of phonetic symbols have been used in
this paper. As familiarity with them is not assumed,
we will explain them here.

• A: for those that distinguish this from the fol-
lowing vowel, it is the vowel in tot.

• O: for those that distinguish this from the pre-
ceding vowel, it is the vowel in taught.



• w: this is the first consonant of witch.

• û: this is the first consonant of which, though
many speakers do not use this, instead merging
with w, above.

• I: as in pin.

• E: as in pen. Some US dialects do not distin-
guish I and E before nasal consonants, such as
n or m.

These features were selected because they were
available in the Atlas, and easily explicable. A thor-
ough effort to algorithmically create dialect maps
would use many more features.
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