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1 Introduction

It is useful to be able to determine water flow
patterns over terrain. The raw data for this task
is usually collected via airborne laser range find-
ing, or LIDAR. This yields a point cloud rep-
resenting the uppermost surface of the terrain.
This cloud is interpolated onto a grid where
each grid cell represents a square portion of the
earth’s surface and it’s value is the average hight
of that portion. Water flow patterns can then be
calculated by looking at the direction of greatest
descent from each cell.

There is a problem, however, with local min-
ima: cells from which there is no direction of
descent. A common cause of this is bridges.
The area over which a bridge passes shows up in
the digital elevation as being of a height greater
than the surrounding terrain, but for the pur-
poses of water flow it is not there. A water flow
simulation model will treat those grid cells as
indicating a barrier, then, when there is in fact
no impediment to water flow. The goal of this
project is to identify bridges to aid in the accu-
rate determination of water flow patterns

2 Past Attempts and Related Work

A common method for dealing with local min-
ima is flooding. In this all grid cells, exclud-
ing those at the edges of the grid, where there
is no lower adjacent cell are raised up to the
height of their lowest neighbor. Repeating this
will eventually rid the map of local minima.
Identical results to this naive method can be
achieved efficiently with a plane sweep algorithm
using topological persistence. (Edelsbrunner et
al., 2000) Unfortunately, as Soille et. al. (Soille
et al., 2003) recognize, this loses information.
Large flat areas, a common result of flooding,
retain no information about their original low
points and do not provide information actual

flow patterns. One can still determine a pos-
sible flow pattern through it, but that pattern
may be totally different from the true one.

Soille et. al. were working with a very low
resolution (250m) grid elevation model to de-
termine the water flow pattern for Europe and
the problems they ran into are somewhat dif-
ferent from those encountered with higher res-
olution data. When they encountered a local
minimum, specifically, it was usually because
some small stream or channel went undetected
with the coarse sampling. Their replacement of
flooding, carving paths from local minima to the
nearest lower area, makes sense for dealing with
the missing channels but can of course get things
wrong. As the local minima in higher resolution
data are much more likely to be products of hu-
man terrain manipulation, generally in the cre-
ation of roads, a system that tags and removes
bridges ought to come closer to true water flow
paths than either flooding or carving.

For last year’s senior conference, Manfredi
and Pshenichkin (Manfredi and Pshenichkin,
2006) used a series of classifiers to tag bridges.
They had a series of simple criteria that a win-
dow had to match to be tagged a bridge. They
were able to detect many of the larger bridges
but missed some smaller ones, as well as complex
structures such as highway interchanges. Their
system also had a large number of false positives,
detecting vegetation and other small artifacts as
bridges. They rightly point out, however, that
there is not too much harm in removing them
along with bridges as they are also not really
there from the perspective of water flow.

One feature that they did not take advan-
tage of is the tendency of bridges to be part
of the road network. All of their classification
work considered only the window that poten-
tially contained the bridge. There has been some



work on detection of of roads from LIDAR data
(Clode et al., 2005), and while the final detected
roads may not be completely accurate, for this
task we don’t need perfection. Instead we just
need a rough idea of how likely a region is to
be part of the road network, which can then be
input to the bridge detection system.

3 Bridge Detection via Road
Detection

For this project I locate bridges in two stages.
In the first I determine an approximate map of
the road network, a map that should generally
be best in areas where the roads are in high re-
lief. These areas correspond well to those where
bridges are likely, so it should be a well suited
map for the task. Second I identify local min-
ima that are near the computed roads in order
to tag road sections as bridges. Input consists of
a digital elevation model in the form of a grid of
floats indicating hight. Output consists of five
similar models with floats indicating likelihood
of being a bridge, with calibration required for
the particular data set.

3.1 Road Detection

Roads are places in the terrain that are flat. Any
flat area could be part of a road. Areas that are
linearly flat, however, are much more likely to be
roads. These would be areas where lines in one
direction are flat while in other directions are
not. Finally, roads tend not to bend sharply,
so if there is a road in a direction we treat grid
cells in that direction as being more likely to be
a road.

This yields four indicators of bridge-likeness.
All are computed on a series of cells represent-
ing a potential road. For every cell ¢ in the grid
we calculate 32 potential roads of a configurable
length running through that point. We then find
which of those series of cells has the lowest av-
erage change in steepness and call that the ‘best
road’ centered on that cell. We also find the
set of cells representing a line perpendicular to
the best road and call that the ‘perpendicular’.
Each indicator acts on one of these two roads
and yields a value attributed to c.

1. Maximum gradient. For the best road, the
likelihood of it being actually a road is in-
versely proportional to the greatest differ-
ence between adjacent cells in the road.

2. Average gradient. Like the previous, except
the average absolute difference is calculated
instead of the maximum one.

3. Maximum gradient of perpendicular. The
likelihood of the best road being a road in-
stead of just a cornfield is indicated by the
unroadlikeness of the perpendicular. This
is calculated as for the maximum gradient.

4. Standard deviation of gradient. Even when
not level, roads tend to be flat. That is,
while they might sometimes have high gra-
dients the (root mean square) standard de-
viation should be low.

3.2 Local Minima

A maximally simple algorithm for determination
of local minima turns out to be quite effective
as the data is not very noisy. For every grid
cell, if no neighbor is smaller, then that cell is
a local minimum. With worse data we might
have a large number of these places and a small
amount of flooding might be worth while. After
flooding an amount small enough not to overflow
bridges we have not lost much flow information
and now should generally have local minima just
in places where there are bridges.

4 Results

These four indicators were tested on two differ-
ent examples of roads. Figures 1 and 2 show
the LIDAR-derived input grids. Figures 3 and 4
show the maximum gradient indicator. Fig-
ures 5 and 6 show the average gradient indicator.
Figures 7 and 8 show the maximum gradient of
perpendicular indicator. Figures 9 and 10 show
the standard deviation of gradient indicator.
All four indicators appear to capture an ele-
ment of bridge detection. One important aspect
of these indicators is that they most strongly la-
bel cells as indicating bridges when those cells
are in places where they would be incorrectly
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Figure 7: The maximum perpendicular of gra-
dient indicator on the Bridge

Figure 8: The maximum perpendicular of gra-
dient indicator on the Interchange

Figure 9: The standard deviation of gradient on
the Bridge

Figure 10: The standard deviation of gradient
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impeding water flow. Actual use of these in-
dicators on real data would require calibrating
them. This would require hand tagging a small
number of bridge examples and computationally
determining the combination of these indicators
that best fits that data.

5 Conclusions

In this paper we have shown that several rel-
atively simple functions analyzing a digital el-
evation model can produce good indicators for
classification of cells as to their probability of be-
ing a road. Further work would include a large
scale test with calibration on a large digital ele-
vation model. Implementation of a second pass
that combined these local bridge likelihood es-
timates into a road network could also improve
accuracy.
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