
Voronoi Natural Neighbors Interpolation

Chris Harman
charman1@cs.swarthmore.edu

Mike Johns
mjohns2@cs.swarthmore.edu

Abstract

Implementing point cloud to grid con-
version for digital elevation maps (DEM)
presents one with many options for inter-
polation and we intend to explore algo-
rithms for interpolation during the con-
version process with a specific focus
on Voronoi natural neighbor interpola-
tion. By partitioning the environment
into Voronoi cells and using the informa-
tion from neighboring cells and their re-
spective generating point’s elevation, we
can achieve aesthetically pleasing inter-
polation results with runtimes competi-
tive with lower-order interpolation algo-
rithms. We compare our natural neigh-
bors interpolation method with a linear
interpolation method and a regularized
spline interpolation method quantitatively
using cross-validation and qualitatively by
rendering the interpolted meshes using
GRASS. 1

1 Introduction

When dealing with discrete sets of elevation data
such as elevation information collected using meth-
ods such as laser range finding or LIDAR, it is often
desirable to be able to estimate or predict the val-
ues of unsampled locations using the available infor-
mation. One application where interpolation can be
useful is visualization of elevation data. Point eleva-
tion data obtained through LIDAR or other remote
sensing methods is not always uniformly sampled.
One way to visualize the data set would be to simply
triangulate the point set into a triangular mesh and

1http://grass.itc.it/

render that mesh, but the resulting image would not
model the underlying data well. By using different
interpolation methods on the original elevation data,
more accurate rendering can be performed and de-
pending on the method of interpolation, the resulting
visualization can change dramatically.

There are many interpolation methods available to
estimate these unsampled values, and the different
methods usually offer tradeoffs between the accu-
racy of the prediction and the efficiency of the com-
putation. One of the simplest interpolation meth-
ods would be to assign each unsampled location a
value based upon which location within the set of
known values it lies closest to. Although this sim-
ple method is computationally efficient, the resulting
function is not continuous everywhere, specifically
along the edges where locations are equidistant from
the samples. In most cases these discretized estima-
tions will not be as accurate as the results from other
more computationally expensive interpolations. The
discontinuities in the resulting function also do not
model the sampled data in an aesthetically pleasing
manner. Methods such as interpolation by regular-
ized spline with tension result in functions which
have regular derivatives of all orders everywhere al-
lowing for analysis of surface geometry as well as
improved accuracy in estimation (?).

Natural neighbors interpolation provides a good
tradeoff between computational efficiency and accu-
racy. In this method the value of an unsampled point
is determined through a weighted average of the val-
ues of the interpolation points neighbors within the
sample set. These natural neighbors are determined
by finding which Voronoi regions from the original
point set would intersect the Voronoi region of the
interpolation point, if it were to be inserted. The re-
sulting function is continuous everywhere within the
convex hull of the sample set and mimics a taut rub-



ber sheet being stretched over the data. Our hope is
that Natural Neighbors Interpolation will provide a
computationally efficient method with which to ac-
curately visualize elevation data.

2 Related Work

There are an overwhelming number of options when
choosing which method to use for interpolation
when converting from a point cloud to a grid for a
DEM. (?) details many low-level routines for in-
terpolation including: the level plane; linear plane;
double linear; bilinear; biquadratic; Jancaitis bi-
quadratic polynomial; piecewise cubic; bicubic; and
biquintic interpolation method. (?) draws the con-
clusion that higher- order interpolation methods will
always outperform those with linear complexity in
terms of modeling the terrain accurately. The prob-
lem with choosing higher-order interpolation rou-
tines is that the computational backlash is not neces-
sarily proportional to the gain in accuracy; this begs
the question: How do we balance modeling accuracy
and compuational efficiency?

Other interpolation methods such as the regular-
ized spline with tension described in (?) attempt to
balance computational efficiency and modeling ac-
curacy. The regularized spline with tension delib-
erately attempts to smooth the surface being iterpo-
lated and tweaks the mesh appropriately. Though
a little less straightforward than other lower-level
methods of interpolation, this method is a good
benchmark for performance and modeling accuracy;
as such, we will use it as a comparison for our
Voronoi natual neighbors method in this paper. We
expect Voronoi natural neighbors interpolation to
represent a desirable balance between computational
complexity and aesthetics.

3 Methods

3.1 Computing the Delaunay triangulation
The Delaunay triangulation for a set of points P is a
triangulation DT(P) such that no point in P is within
the circumcircle of any triangle within the triangu-
lation. This is also the triangulation which maxi-
mizes the minimum angle within the triangulation.
DT(P) is computed using a randomized incremental
approach as outlined in (?). Each point in P is in-
serted incrementally and the Delaunay triangulation

for that set of points is computed. Initially the tri-
angulation consists of a single triangle which is de-
fined to contain all of the points within P. As each
point is inserted, the appropriate edges are added
to the current Delaunay triangulation so that it re-
mains a triangulation although it is not necessarily
still a Delaunay triangulation. In order to ensure that
no point within the current triangulation lies within
the circumcircle of any triangle, illegal edges must
be flipped. An illegal edge is one where the cir-
cumcircle defined by the three vertices of one ad-
jacent triangle contains the outlying point from the
other adjacent triangle. Special care must be taken
when legalizing edges where one or more of the ver-
tices involved belong to the initial bounding trian-
gle. Only edges whose adjacent triangles have been
changed due to the insertion of the new point can
be illegal since the triangulation was legal before-
hand. As a result when an edge is illegal and must be
flipped, the other edges incident to the involved tri-
angles must also be legalized. Since the angle mea-
sure of the triangulation increases with each edge
flip and there is a maximum angle measure for the
given set of points, the edge legalization is guaran-
teed to terminate. Once all of the points have been
inserted into the triangulation, the vertices of the ini-
tial bounding triangle and all of the edges incident to
these three vertices must be removed from the trian-
gulation.

3.2 Transforming to the Voronoi Diagram

The Voronoi Diagram of a set of points P Vor(P)
can be computed easily given its dual DT(P). Each
triangle within DT(P) corresponds to a vertex in
Vor(P). Each edge in DT(P) corresponds to an edge
in Vor(P). For a triangle in DT(P), the location of the
vertex in Vor(P) can be calculated by determining
the center of the circle circumscribed by the three
vertices of the triangle. This point can be found by
determining the intersection of the perpindicular bi-
sectors of each edge in the triangle. Each edge in
DT(P) is adjacent to two triangles and corresponds
to an edge in Vor(P) connecting the two vertices
which are the duals of these adjacent triangles. Us-
ing this dual transformation it is a simple procedure
to compute Vor(P) given DT(P).



Figure 1: This figureashows the Voronoi cell for the inserted
point v overlayed on the Voronoi diagram for the original point
set. One of v’s natural neighbors, p, is shown with its Voronoi
cell shaded. The area stolen by the insertion of v can be seen in
the overlap between the two Voronoi cells.

3.3 Computing the Natural Neighbors
Interpolant

When computing the natural neighbors interpolant,
it is important to intuit the relative ‘neighborliness,’
as (?) calls it, of adjacent Voronoi cells. These
neighbors are the points within the original point
set whose Voronoi cells intersect the Voronoi cell
of the interpolated point, if it were to be added to
the point set. The interpolated value is computed
as a weighted average of the area stolen from each
neighbor by the insertion of this point.

To compute this weighted average, we first com-
pute the Delaunay triangulation of the original set
of points P. Given DT(P) we need to calculate the
Voronoi cell of the point v, whose value we want to
estimate, if it were to be added to P. Since the in-
sertion of v will only alter DT(P) and consequently
Vor(P) locally, we do not need to recompute the en-
tire Delaunay triangulation. We only need to com-
pute a Delaunay triangulation for the points which
would be neighbors of v. In order to determine this
local point set we can use the existing triangulation
DT(P)and corresponding Voronoi diagram. The area
stolen from each neighbor of v can be computed by
finding the difference between the area of Voronoi
cell in Vor(P) and the area within the local Voronoi
diagram. The interpolated value for v is then cal-

culated as:
∑

neighbors ofv
areastolen

area of the Voronoi cell ofvα
where alpha is the value, possibly an elevation value,
for the specific neighbor.

To compute DT(P) and transform to Vor(P) as de-
scribed earlier takes O(n logn) time where n is the
size of P. Vor(P) must be calculated once for the
original point set. The local Voronoi diagram must
be calculated for each interpolated point. Since the
size of this local subset of P does not depend on
n but rather the distribution of points in P and the
number of neighbors that the inserted point would
have, we can assume that for large point sets, this
local set of points will be much smaller than n and
will not depend on n. This means calculating the lo-
cal Voronoi diagram will take a relatively constant
amount of time independent of the size of P. In or-
der to determine which points belong in this local
point set we determine which triangle in DT(P) the
point lies within. We can follow the outgoing edges
from the vertices of this triangle to determine the ap-
propriate neighbors to include. This process again
depends on the the size of the local point set which
does not depend on n. To calculate the weighted av-
erage we must locate Voronoi cells a constant num-
ber of times. We can use the DAG search structure
for DT(P) to locate points and follow the dual point-
ers into Vor(P). Locating a Voronoi cell will take
O(logn) time. For each point we need to interpo-
late we need to perform a constant number of logn
searches plus a relatively constant amount of work
to compute the local Voronoi diagram, so to inter-
polate k points for a point set of size n would take
O((n+k)logn) time.

4 Results

A set of 50 points within a 400 by 400 region were
chosen. Elevation data for these points was then ob-
tained by sampling an elevation image which can be
seen in Figure 2 (far left). Three different interpola-
tion methods were performed on a small subregion
of the image using the 50 sampled points. The first
method used was our natural neighbor interpolation
algorithm. The results of our interpolation were then
compared to two of GRASS’ built in interpolation
routines, regularized spline with tension and inverse
distance weighting. The differences between the re-
sulting interpolated images and the original image



Figure 2: This figure shows the original image, the image generated using our natural neighbors interpolation routine, GRASS’
regularized spline with tension and GRASS’ inverse distance weighting from left to right, respectively.

Figure 3: This figure shows the difference images generated by subtracting the interpolated images from the original image. The
difference images were then thresholded to only display values above a certain value. Their arrangement is identical to the table
below.

Threshold NNI RST IDW
10 5.1% 13.5% 38.9%
2 28.4% 44.4% 57.1%

Table 1: This table displays the percent of the interpolated image that differs from the original image by a defined threshold.



were calculated within the appropriate region. The
results were thresholded at varying levels and per-
centages for estimated values lying outside of the
threshold were calculated in table 1.

For the given data set and sampled points, our
natural neighbor interpolation routine outperformed
the built in regularized spline with tension and in-
verse distance weighting interpolation routines. At
a threshold of 10 units, only 5.1% of the pixels were
incorrectly estimated by our interpolation routine
compared with 13.5% and 38.9% incorrect respec-
tively for the regularized spline with tension and in-
verse distance weighting routines. At a lower thresh-
old of 2 units, our routine still dramatically outper-
formed the other two methods.

5 Discussion

All three methods of interpolation seemed to have
trouble estimating values in relatively similiar areas.
This could result from the sample points being more
sparse in these areas or the frequency of the data in
the original image being higher. Looking at the dif-
ference images generated for each of the interpola-
tion routines reveals that these trouble zones for in-
terpolation are common across each method.

Due to a lack of robustness in our interpolation
routine, values at certain locations could not be es-
timated which can be seen with the speckling in the
difference image. This leads to a greater percent in-
correct which leads us to believe that our method
would perform even better given a more robust im-
plementation. The relative aesthetic advantage of
natural neighbors interpolation over the regularized
spline with tension method and the inverse distance
weighting method is readily apparent. It seems that
the natural neighbors method is much more capa-
ble of dealing with a sparse set of points to interpo-
late. This advantage could be because the tessela-
tion underlying the interpolation routine extends be-
yond the boundary of the eventual image, allowing
for better interpolation around the boundary of the
image relative to the other methods.

We chose not to include runtime comparisons be-
cause our method took far longer to finish compared
to the others. Each time we ran the natural neighbors
routine, it required approximately an entire night
to complete. When GRASS interpolated using its

built-in routines, they both finished in about one sec-
ond - negligible compared to our runtime. The ex-
treme expedience of GRASS’ routine is likely due
to the sparse number of points that were interpolated
over.

6 Future Work

There are several improvments to our interpolation
method that would greatly enhance the usefullness
of our implementation. The first necessary improve-
ment centers around the degeneracies hinder the
proper triangulation of the environment. Having a
more robust Delaunay triangulation would remove
the uninterpolated holes in the final image. This
could have also been worked around easily by av-
eraging over the gaps in interpolation once the De-
launay triangulation failed. Improving our point in-
sertion method during the interpolation step would
help cut down on some of the computational costs
as well.

Creating a more extensive set of comparisons by
varying the number of points interpolated over, vary-
ing the image frequency and complexity and in-
cluding other interpolation methods would provide
a more accurate gauge of our interpolation method’s
relative performance. A more comprehensive run-
time comparison between methods would hopefully
help determine the practical usage of our interpola-
tion method too.


