
Approximate K Nearest Neighbors in High Dimensions

George Dahl

gdahl@cs.swarthmore.edu

Mary Wootters

mwootte1@cs.swarthmore.edu

Abstract

Given a set P of N points in a d-
dimensional space, along with a query point
q, it is often desirable to find k points
of P that are with high probability close
to q. This is the Approximate k-Nearest-
Neighbors problem. We present two al-
gorithms for AkNN. Both require O(N2d)
preprocessing time. The first algorithm has
a query time cost that is O(d+log N), while
the second has a query time cost that is
O(d). Both algorithms create an undirected
graph on the points of P by adding edges
to a linked list storing P in Hilbert order.
To find approximate nearest neighbors of a
query point, both algorithms perform best-
first search on this graph. The first algo-
rithm uses standard one dimensional index-
ing structures to find starting points on the
graph for this search, whereas the second al-
gorithm using random starting points. De-
spite the quadratic preprocessing time, our
algorithms have the potential to be use-
ful in machine learning applications where
the number of query points that need to
be processed is large compared to the num-
ber of points in P . The linear dependence
in d of the preprocessing and query time
costs of our algorithms allows them to re-
main effective even when dealing with high-
dimensional data.

1 The Problem

The K-Nearest Neighbors problem is the follow-
ing: given a set P of N points in a d−dimensional
space and a query point q, return the k points in P
that are closest to q.

However, solving K-Nearest-Neighbors in high
dimensions (say, more than 10) has proved compu-

tationally infeasible - most solutions are not much
better than the näıve method. Thus, we consider
the Approximate K-Nearest Neighbors prob-
lem: given a set P of N points in a d−dimensional
space, a query point q, and parameters ǫ and δ be-
tween 0 and 1, return, with probability greater than
1−δ, k points of P such that the ith point is at most
(1+ ǫ) times farther from q than the true ith nearest
neighbor of q (Arya et al., 1994).

Approximate K-Nearest Neighbors is widely
applicable, but we are motivated by its application
to supervised machine learning. Machine learning
applications are often characterized by a data set of
relatively high dimensionality, so we are interested
in solutions that scale well with d. In a typical su-
pervised learning scenario, a training set is processed
offline, and later the system must be able to quickly
answer a stream of previously unknown queries. Our
assumption is that the number of queries will be
large compared to N , which is why we are more
concerned with query time than preprocessing time.
Many supervised machine learning techniques that
could be alternatives to K-Nearest Neighbors

have quadratic or cubic (in N) training time. To this
end, our goal is to make query time as fast as possi-
ble, and accept almost any reasonable preprocessing
cost (quadratic in N or better). Since the näıve al-
gorithm has a query time complexity of O(Nd), we
demand a solution that provides query times sublin-
ear in N and linear in d.

2 Related Work

Recent solutions to K-Nearest Neighbors that we
have found tend to fall into two categories: ones that
employ locality sensitive hashing (LSH) (Andoni and
Indyk, 2008; Gionis et al., 1999) or ones that use
sophisticated tree-like structures to do spatial par-
titioning (Liu et al., 2004; Arya and Mount, 1993;
Arya et al., 1994; Beckmann et al., 1990; Berchtold et
al., 1996). LSH defines a hash function on the query

space which has a collision probability that increases
as the distance between two points decreases. In gen-
eral, LSH approaches scale reasonably well with d,
while the tree-based algorithms tend not to scale as
well. Most notably, Arya et al. (1994) present an al-
gorithm which, for fixed d, has a preprocessing cost
of O(N log N) and a query time of O(log N), but
is exponential in d. There are results which scale
well with d and have fast query time. In partic-
ular, Kleinberg (1997) presents an algorithm with
query time O(N + d log3 N), and preprocessing cost
quadratic in d, linear in N , and is O(1/ log(δ)) in δ.
Andoni and Indyk (2008) use LSH to achieve a query

time of O(N1/c2+o(1)d), and pre-processing cost of

O(N1+1/c2+o(1)d), where c = (1 + ǫ).

3 Algorithm 1

Our two algorithms are similar. We will describe the
first in its entirety, and then describe the changes we
make to produce the second one.

3.1 Overview

Algorithm 1 creates several auxiliary data struc-
tures to speed up query processing. The most im-
portant of these index structures is a graph, G, that
holds all the N points in P . To create G, we first cre-
ate a linked list containing all the points in P that is
sorted in the Hilbert order. Then we add edges to the
graph by linking points that are close together. The
goal is to create a connected graph (starting with
a linked list ensures connectedness) in which two
points that are close in space will be very likely to be
close on the graph. We also construct a small, con-
stant number of one-dimensional search structures,
specifically red-black trees, that order points based
on their projections onto one-dimensional subspaces
of our space. Given a query point q, the one dimen-
sional search structures are used to obtain a small
set of initial guess nodes in G. These are the nodes
corresponding to points whose projections are close
to the projection of q in the one-dimensional sub-
spaces. Starting at these guess points, our algorithm
searches G until k + m nodes have been touched, for
some constant m (assuming k + m is greater than
the number of guess points, otherwise we touch each
guess point once). The nodes are sorted by their
distance to q, and the first k are returned.

Figure 1: The first six curves in the sequence limiting
to the Hilbert curve. Picture courtesy of Wikimedia.

3.2 Preprocessing and Auxiliary Data

Structures

Algorithm 1 requires several auxialiary data struc-
tures, as mentioned above. It uses a graph G on
nodes corresponding to points in P , and several red-
black trees. In order to create G, we first compute
the Hilbert order of the points in P .

3.2.1 Snapping Points to an Integer Lattice

and Sorting by Hilbert Order

The Hilbert curve is a space-filling curve defined as
the limit of self-similar curves in a d-dimensional
space. The first few curves in the 2-dimensional
sequence are shown in Figure 1. One of the more
celebrated properties of the Hilbert curve (Jagadish,
1990) is that it preserves locality well. That is, if two
points are close in the d-dimensional space, their pre-
images on the unit interval will likely be close. Each
curve in the sequence touches every point of a d-
dimensional lattice with 2n points on each side for
some n. The Hilbert order of a set of points P on
such a lattice is the order of the preimages of the
points in the unit interval. We impose a Hilbert or-
der on our set of points P by snapping them to such
a lattice first. We compute the location in the lattice
for a point by applying the following function to it:

f(~x) = ⌈a~x⌉ +~b,

where
1

a
= min

~p,~q∈P

(

min
i≤d

|pi − qi|

)

and
bi = −min

~p∈P
⌈pi⌉,

where xi denotes the ith component of ~x. That is,
the smallest distance along any axis between any two

points becomes the lattice spacing. Such a poten-
tially small lattice spacing could be undesirable be-
cause computing the Hilbert order might take too
long. In practice, we have not found this to be a
problem, but if it were, a coarser lattice could be
used. Once the points are on a lattice, we compute
the Hilbert order using an algorithm developed by
Butz (1971), and explained to us by Jaffer (2008b).
Our implementation is based on the implementation
of hilbert->int in the SLIB library (Jaffer, 2008a).

3.2.2 Additional Graph Edges

The graph G begins as a linked list of the points
of P in the Hilbert order as described above. For
clarity, we will refer to nodes in G by the point
they correspond to in P . Edges are strategically
added as follows: each node p in G is linked to the
b nodes closest to p in space, for some constant b.
If p’s b nearest neighbors are already adjacent to
it (perhaps they were in the original linked list or
they themselves have already been processed), these
edges are not added again. This guarantees that each
node of G will be adjacent to its b nearest neigh-
bors. These nearest neighbors are computed using
the näıve method, i.e., simply scanning all the points
in P .

3.2.3 One-Dimensional Search Structures

In order to keep preprocessing costs low, we choose
a subset P ′ of P consisting of N2/3 points randomly
selected from P . For some constant c, suppose the
first c principal components of P ′ are {a1, . . . , ac}.
For each principal component ai, we create a red-
black tree Ti holding the elements of P ordered by
where they fall along ai.

3.3 Handling Queries

Given a query point q, we search each one-
dimensional search structure Ti for the point pi

whose projection onto ai is the closest to the pro-
jection of q onto ai. These pi are the c initial nodes
for the search of G.

The search proceeds in a best-first manner by prefer-
entially expanding nodes closer to q. If n is a node in
G, let d(n) denote the distance from n to q. Two pri-
ority queues are maintained during the search, ToEx-
pand and BestK. We initialize ToExpand to contain
the nodes pi. ToExpand is a minheap with the prior-
ity of node n being d(n). We initialize BestK to be
empty. BestK is a maxheap, such that the highest
priority node l maximizes d(l). For m + k steps, a
node n is removed from ToExpand. If d(n) > d(l) for

the node l with the highest priority in BestK, then
n is added onto BestK and l is removed (assuming
BestK contains k items). Then all of the nodes adja-
cent to n are added to ToExpand. After m+k steps,
the k nodes in BestK are returned.

3.4 Cost Analysis

In order to compute the Hilbert order, we map each
point in P to its distance from the origin along
the appropriate Hilbert curve. This computation is
O(d + log s), where s is a times the maximum co-
ordinate of p, where a is the factor from our lattice
snapping. Although we cannot control the maximum
coordinate or a, we find that in practice, at least, we
can compute the Hilbert order very quickly in hun-
dreds of dimensions. We could theoretically control
these variables by creating a coarser lattice, which
might result in an approximation of the Hilbert or-
der. We are convinced that this is not a problem.
We assume that either s is reasonable or we force it
to be so by adjusting the lattice, so this step should
take time approximately linear in Nd.

We can complete the preprocessing phase of our al-
gorithm in O(N2d) time. Once points are in a linked
list, for each point in P we add at most b additional
edges. The new edges can be computed for a given
point with a single scan of the points in P which
will require O(N) distance computations which each
take time linear in d. Therefore we can construct
the graph in O(N2d) time. Computing the principal
components of a subset of P of cardinality N2/3 can
be done in time quadratic in N since Principal Com-
ponent Analysis can be performed in time cubic in
the size of the dataset. The search trees can easily be
constructed in O(N log N) time, so our preprocess-
ing phase can be completed in O(N2d) time. The
space requirements of our auxiliary data structures
are clearly linear in N .

To evaluate a query, we need to do a constant num-
ber of searches of red-black trees on N nodes which
will have a cost logarithmic in N . We also have to
project the query point into one dimension which
adds a term proportional to d to our cost. In the
best-first search of the graph we search a constant
number of nodes and do a constant number of dis-
tance computations in d dimensions. Thus our query
time is O(d + log N).

4 Algorithm 2

Algorithm 2 is a simplification of Algorithm

1. Initial experiments suggested that the one-

dimensional search structures used in Algorithm 1

were not that important to performance. Since the
1D search structures added a term proportional to
log N to our query time, we designed a new algorithm
that does not use them. In Algorithm 1, the red-
black trees were used to get starting points for the
best-first search. In Algorithm 2, we simply pick c
random start points for this search. However, these
start points will almost certainly be worse guesses
than those produced by the red-black trees. Since
we only expand a small constant number of nodes
in our best-first search and since all of the edges in
G connect points that are close in space, the search
will expand many nodes that are far from the query
point. Our solution is to add some longer edges to
G. In the preprocessing phase of Algorithm 2, for
each node in G, we add an edge from that node to
one other random node (if the edge does not already
exist). On average, these edges will be much longer
than the nearest-neighbor edges.

4.1 Cost Analysis

The preprocessing phase of Algorithm 2 is identical
to the preprocessing phase of Algorithm 1, except

1. PCA is not performed.

2. Red-black trees are not constructed.

3. We add up to N random edges.

Adding the N random edges requires a single scan
of the nodes in G, therefore our preprocessing time
is still O(N2d).

The term proportional to log N in the query time of
Algorithm 1 resulted from querying the red-black
trees. Algorithm 2 does not do this, so the query
time for Algorithm 2 is O(d).

5 Experiments

Because we do not have proofs about the relation-
ships between b, c,m, ǫ, and δ, we ran extensive em-
pirical tests of our algorithms.

5.1 Datasets

We tested our algorithms on several large high di-
mensional data sets, both synthetic and real. Our
synthetic data consists of mixtures of multivariate
Gaussian distributions. Covariance matrices and
means were generated randomly to produce these
distributions. In particular, we considered unimodal,
bimodal, pentamodal, and dodecamodal synthetic

distributions. Gaussian distributions were chosen
both because they often approximate distributions
found in the wild, and because given a finite variance,
the Gaussian distribution achieves the maximum en-
tropy. We predicted that our algorithms would per-
form best on data with fewer modes, so the higher
modal1 distributions were selected to challenge our
algorithms. In the case of the synthetic data, query
points were drawn from the same distribution used
to create the data. All of the synthetic data sets were
50-dimensional and contained 3000 points.

Real-world data was obtained from the UCI Machine
Learning Repository (Asuncion and Newman, 2007).
We used the ISOLET data set, which is audio data
of spoken letters of the alphebet, and the Waveform
Database Generator dataset. The ISOLET data set
has 617 dimensions and more than 5000 points. The
waveform data set has 22 dimensions and also more
than 5000 points. In the case of the real data, the
data sets were split into two parts, one for the initial
set of points, and one from which to draw queries.

5.2 Parameters and Measurements

For each data set tested, the independent variables
were:

· b: The number of nearest neighbors each point
in P is connected to in G.

· c: The number of one-dimensional search struc-
tures created in the case of Algorithm 1, or the
number of guess points in the case of Algorithm
2.

· m: The number of nodes (beyond k) in the
graph that are expanded.

· k: The number of nearest neighbors requested.

The variables measured were:

· Percent Correct: The percent of the points re-
turned which are actually among the k nearest
neighbors.

· Excess Rank: The actual rank (that is, the j
of “jth-nearest neighbor”) of the worst point re-
turned, minus k.

· Maximum Epsilon: If the actual ith nearest
neighbor of a query point q has distance di

from q, and the ith approximate nearest neigh-
bor has distance d′i from q, then Max Epsilon=

1With more extreme modality/modacitude, as it were.

maxi (d′i/di − 1). Note that this is an upper
bound on the ǫ from the definition of AkNN,
if δ = 1.2

Based on preliminary experiments, the parameters b,
c, m, and k were allowed to vary in the ranges below.

· b ∈ {0, 1, . . . , 10}

· c ∈ {1, 4, 16}

· m ∈ {0, 1, 10, 30, 60, 100, 150, 200, 250} in
Algorithm 2. For Algorithm 1, we ommitted
200 and 250 because m had less of an impact.

· k ∈ {100}

We ran preliminary experiments using a variety of
values for k, but settled on k = 100. The relation-
ships between parameters are easier to determine for
larger k, since the algorithms are identifying more
neighbors, and so setting k = 100 is more enlight-
ening than looking at smaller values of k. For each
combination of parameters, 50 queries were made,
and the average value for each dependent variable
was recorded. An implementation of the näıve ex-
act kNN algorithm determined the accuracy of the
approximate nearest neighbors. We ran experiments
using the above parameters on all of our synthetic
data sets.

We tested how each parameter affected our perfor-
mance metrics (Percent Correct, Maximum Epsilon,
Excess Rank) when the other parameters were small
and fixed. We fixed two of c = 4, m = 10, b = 4,
varying the third.

On the real-world data, we picked reasonable values
for all parameters and did not vary them. The chosen
parameter values were c = 4, b = 4, m = 100, k =
100.

In the results presented below, the graphs for Ex-
cess Rank exactly followed the graphs for Maximum
Epsilon, so we omit them.

6 Results

Unsurprisingly, b is an important parameter for both
algorithms. Figure 2 shows that for Algorithm 1, if
c and m are small, b can easily pick up the slack.
For b > 4, nearly all of the nearest neighbors are
guessed correctly. As shown in Figure 3, for distribu-
tions with few modes, using a large enough b ensures

2Further note that this is not generally how the ex-
perimental ǫ is computed for AkNN.

Figure 2: Algorithm 1 on synthetic data sets with
3000 points in 50 dimensions. For b > 4, nearly 100%
of the nearest neighbors are correctly identified.

that Maximum Epsilon is close to zero. Unfortu-
nately, when we run Algorithm 1 on distributions
with more modes, Maximum Epsilon is not as close
to zero.

As can be seen in Figure 4, Algorithm 2 scales with
b in the same way as Algorithm 1 does. A high
b guarantees a good maxEpsilon for the unimodal
and bimodal cases, but the situation is worse for the
5 and 12−modal cases. This is because incorrect
neighbors were sometimes drawn from a Gaussian in
the mixture that was far away.

However, there is a difference in the Percent Correct
achieved by our two algorithms as a function of b. As
can be seen in Figure 5, while the general relationship
between Percent Correct and b on a single distribu-
tion is the same for both algorithms, the distribu-
tions that are easier for Algorithm 1 to handle are
not the distributions that are easier for Algorithm 2

to handle. While Algorithm 1 had a lower Percent
Correct on the 12-modal distribution, even for larger
b, Algorithm 2 appears to behave in the opposite
way. For Algorithm 2, Percent Correct is highest
for the 12-modal distribution for pretty much all b.
In all cases, a choice of b > 4 still guaranteed a high
Percent Correct.

Increasing m improves Percent Correct and Max Ep-
silon. However, over the ranges we tested, b has
more of an impact than m on the performance of
Algorithm 1. Figures 6 and 7 demonstrate this ef-
fect nicely. As we have come to expect for Algorithm
1, the 12-modal distribution produces the worst per-
formance. Algorithm 2 benefits even more than
Algorithm 1 from increased m. Figures 8 and 9

Figure 3: Algorithm 1 on synthetic data sets with
3000 points in 50 dimensions. For b > 4 and for
data sets with few modes, the points which are not
correct are not far from the points which are correct.
For data sets with many modes, this is less true.

Figure 4: Algorithm 2 on synthetic data sets with
3000 points in 50 dimensions. For b > 4 and for data
sets with few modes, the points that are not correct
are not far from the correct points. For data sets
with more modes, this is less ture.

Figure 5: Algorithm 2 on synthetic data sets with
3000 points in 50 dimensions. For b > 4, nearly
100% of the nearest neighbors are correctly identi-
fied. Surprisingly, Algorithm 2 does better on more
complicated distributions.

demonstrate that when we run Algorithm 2 with
increasing m on any of our synthetic data sets, Per-
cent Correct rapidly approaches 1 and Max Epsilon
rapidly approaches 0. The increased impact of m
of Algorithm 2 makes sense because Algorithm 2

partly depends on a more extensive search to make
up for its random starting points.

For both algorithms, over the ranges that we tested,
c had less of an impact on performance than m or b.
In particular, the Percent Correct for Algorithm 2

was almost independent of c. It should be noted that
while c represents the number of initial points for the
search in both algorithms, these points are obtained
in completely different ways. Thus, we do not gain
much insight by comparing the effects on Algorithm

1 and Algorithm 2 of varying c. At some point,
changing c would impact performance, but we are
content to find a single reasonable value for c and
focus on the other more important parameters.

Due to time constraints, we did not test Algorithm
2 on our real world data sets. However, Algorithm
1 performed admirably, especially considering the
large number of dimensions (617) in the ISOLET
data set. We have no reason to believe that
Algorithm 2 would not be as good or better than
Algorithm 1 on the real world data. Our experi-
ments on synthetic data sets suggested that m = 100,
b = 4 and c = 4 would be reasonable parameter set-
tings that should work on any task. The results of
running Algorithm 1 with these parameters on all
of our data sets are shown in Table 1. Algorithm

1 returned more than 90% of the correct k nearest

Figure 6: Algorithm 1 on synthetic data sets with
3000 points in 50 dimensions. As we would hope,
Percent Correct increases with m.

Figure 7: Algorithm 1 on synthetic data sets with
3000 points in 50 dimensions. m seems relatively
effective for data sets with few modes. For data sets
with many modes, this is less true.

PC ME ER
1-Modal 0.919 0.009 9.83
2-Modal 0.970 0.005 3.22
5-Modal 0.992 0.002 0.82
12-Modal 0.929 0.154 58.86
ISOLET 0.922 0.042 33.93

Wave 0.952 0.009 5.55

Table 1: Average Percent Correct (PC), Max Epsilon
(ME), and Excess Rank (ER) over 100 queries on real
world data (ISOLET and Wave) and over 50 queries
on the synthetic data

Figure 8: Algorithm 2 on synthetic data sets with
3000 points in 50 dimensions. As we would hope,
Percent Correct increases with m, and more so than
in Figure 6.

Figure 9: Algorithm 2 on synthetic data sets with
3000 points in 50 dimensions. m seems relatively
effective for data sets with any number of modes.

Figure 10: Both algorithms on the 12-modal syn-
thetic data sets with 3000 points in 50 dimensions,
along with a new algorithm Hobbled Algorithm 2.
This algorithm is the same as Algorithm 2, except
no random edges are added.

neighbors of the query points on each data set. As we
have come to expect, Algorithm 1 performed worse
on the 12-modal data set. The ISOLET data set was
also difficult, as presumably its intrinsic dimension-
ality was much larger that the dimensionality of the
synthetic data.

6.1 Comparison of Algorithms

While Algorithm 2 may sacrifice quality in its ini-
tial guesses when compared to Algorithm 1, it also
has a more complete graph to search. Comparing
the performance of both algorithms on our synthetic
data sets, we found that Algorithm 2 tended to out-
perform Algorithm 1 on the 12-modal set, and that
there was no discernable pattern on the other sets.
One might wonder whether or not using the one di-
mensional search structures helped Algorithm 1 at
all, or whether the additional random edges helped
Algorithm 2. Figure 10 demonstrates that the an-
swer to both questions is yes. While Algorithm

2 does slightly better than Algorithm 1, both do
much better than Hobbled Algorithm 2, which is
the same as Algorithm 2, except no random edges
are added.

7 Conclusions and Future Work

The adjustments we made to Algorithm 1 to obtain
Algorithm 2 suggest a third algorithm with O(Nd)
preprocessing time and O(d) query time that might
be interesting to try in future work. This algorithm,
tentatively called Algorithm 3, would start with the

same linked list as Algorithms 1 and 2, add b ran-
dom edges to each node, and process queries as in
Algorithm 2. Dispensing with the nearest neighbor
edges would give us the faster preprocessing time. It
would be interesting to see how accurate Algorithm

3 would be.

We have presented two algorithms which, though
O(N2d) in preprocessing cost, handle queries in
O(d + logN) and O(d) time, respectively, with ex-
perimentally good accuracy. As they are only lin-
ear in d, our algorithms scale well to the high-
dimensional problems common in machine learning.
Furthermore, our algorithms do not appear to be
overly sensitive to parameter settings - choices of,
say, m = 100, b = 4, and c = 4, seem to be suffi-
cient to get good accuracy on all the data sets we
tried. Our second, faster algorithm seems to do as
well or better than our first algorithm, and its per-
formance seems depend even less on the data distri-
bution. Since Algorithm 2 is faster and seems to be
more robust, it should be preferred in general. Ulti-
mately, our second algorithm is an attractive choice
for solving Approximate K Nearest Neighbors

in high dimensions.

References

Alexandr Andoni and Piotr Indyk. 2008. Near-
optimal hashing algorithms for approximate near-
est neighbor in high dimensions. Commun. ACM,
51(1):117–122.

Arya and Mount. 1993. Approximate nearest neigh-
bor queries in fixed dimensions. In SODA: ACM-
SIAM Symposium on Discrete Algorithms (A Con-
ference on Theoretical and Experimental Analysis of
Discrete Algorithms).

Sunil Arya, David M. Mount, Nathan S. Netanyahu,
Ruth Silverman, and Angela Wu. 1994. An op-
timal algorithm for approximate nearest neighbor
searching. In SODA ’94: Proceedings of the fifth an-
nual ACM-SIAM symposium on Discrete algorithms,
pages 573–582, Philadelphia, PA, USA.

A. Asuncion and D.J. Newman. 2007. UCI machine
learning repository.

Norbert Beckmann, Hans-Peter Kriegel, Ralf Schnei-
der, and Bernhard Seeger. 1990. The r*-tree: an ef-
ficient and robust access method for points and rect-
angles. SIGMOD Rec., 19(2):322–331.

Stefan Berchtold, Daniel A. Keim, and Hans-Peter
Kriegel. 1996. The X-tree: An index structure
for high-dimensional data. In T. M. Vijayaraman,

Alejandro P. Buchmann, C. Mohan, and Nandlal L.
Sarda, editors, Proceedings of the 22nd International
Conference on Very Large Databases, pages 28–39,
San Francisco, U.S.A. Morgan Kaufmann Publish-
ers.

A. R. Butz. 1971. Alternative algorithm for hilbert’s
space-filling curve. IEEE Trans. Computers, C-
20:424–426.

Aristides Gionis, Piotr Indyk, and Rajeev Motwani.
1999. Similarity search in high dimensions via hash-
ing. In VLDB ’99: Proceedings of the 25th Interna-
tional Conference on Very Large Data Bases, pages
518–529, San Francisco, CA, USA. Morgan Kauf-
mann Publishers Inc.

Jaffer. 2008a. The SLIB Portable SCHEME Li-
brary, available at http://swissnet.ai.mit.edu/ jaf-
fer/SLIB.html.

Aubrey Jaffer. 2008b. Personal Communication.

H. V. Jagadish. 1990. Linear clustering of objects
with multiple attributes. SIGMOD Rec., 19(2):332–
342.

Jon M. Kleinberg. 1997. Two algorithms for nearest-
neighbor search in high dimensions. In Proceedings
of the Fifth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, pages 599–608.

T. Liu, A. Moore, A. Gray, and K. Yang. 2004. An
investigation of practical approximate nearest neigh-
bor algorithms.

