
Finding Your Inner Blaha:
GPS Mapping of the Swarthmore Campus

Matt Singleton and Bronwyn Woods
{msingle1,bwoods1}@cs.swarthmore.edu

Abstract

Swarthmore College is a largely un-
mapped, dangerous region of southeast-
ers Pennsylvania. Or rather, we treat it as
such for the purposes of this paper. We
present an interactive tool for calculating
the shortest path between two points on
the Swarthmore campus. We develop our
tool using a combination of GPS tech-
nology and knowledge of Swarthmore’s
buildings. We allow users to specify a
Blaha factor, which scales the weights of
indoor paths, causing them to be treated as
shorter or longer than their real lengths in
the shortest path calculations. In this way,
users can express a preference for travel-
ing primarily indoors or outdoors, depend-
ing on personal preference and weather
conditions.

1 Introduction

People familiar with a place often have strong in-
tuitions about the most efficient ways of traveling
between locations they frequent. However, people’s
intuitions are sometimes in disagreement. Addition-
ally, special circumstances such as extraordinarily
nice or foul weather may influence a person’s pref-
erence for possible routes. We present a tool for
identifying the shortest path between two points on
the Swarthmore College campus, allowing for pref-
erences for indoor or outdoor paths.

We mapped the outdoor paths on the campus us-
ing GPS technology and estimated the indoor paths

based on our knowledge of the buildings. Using a
combination of manual and algorithmic techniques,
we transformed our raw point data into a graph on
which we perform shortest path routing using Dijk-
stra’s algorithm. We allow indoor and outdoor paths
to be weighted differently, effectively discounting or
penalizing the distance traveled inside.

Our tool is presented as an interactive GUI that
allows the user to select points on a map of Swarth-
more’s campus. The tool graphically displays the
shortest path according to the value of theBlaha fac-
tor, or weighting of the indoor paths, set by the user.

2 Related Work

2.1 Global Positioning System

The NAVSTAR Global Positioning System (GPS)
provides precise information about location by us-
ing signals transmitted by 24 satellites in Earth’s or-
bit. Originally designed for exclusive military use,
the system was opened for civilian use as it became
fully operational in the early 1990s. GPS satellites
transmit ranging signals which encode information
about the satellite’s location at the time the signal
was sent. By combining information received from
several satellites, this signal allows GPS receivers to
calculate their 3D location on Earth’s surface. The
accuracy of locations determined by GPS can range
dramatically depending on the quality of the GPS re-
ceiver. Commercial quality GPS receiver units have
typical errors of between 10m to 30m, while more
expensive systems can reach an accuracy at the sub-
centimeter level (US , 2003).

Many factors contribute to the overall accuracy



of measurements taken using GPS. These include,
in addition to the quality of the receiver, atmo-
spheric conditions, the environment of the user and
the position of the GPS satellites relative to the user.
GPS measurements with commercial receivers can
only be performed outdoors and can be disrupted by
dense tree cover or other large obstacles (US , 2003).

2.2 Dijkstra’s Algorithm

Dijkstra (1959) describes two algorithms for find-
ing shortest paths on a graph, one for finding the
minimum spanning tree and the other for finding the
shortest path between two nodes. For the purposes
of this project, we were concerned only with the lat-
ter. The operation of this algorithm is discussed in
section 3.3.

3 Methods

3.1 Data Collection

We collected raw data about the paths on the Swarth-
more College campus using a Garmin GPSMap70
GPS unit. We marked paths by recording points
manually at regular intervals. Manually recording
points allowed us to determine the frequency with
which we recorded points and to ensure that we
recorded points at the intersections and endpoints of
paths. Each point we recorded was given a unique
ID, allowing us to keep track of which points started
and ended any given path. In total, we collected
910 points. In addition to the data points delimiting
the paths, we recorded individual points represent-
ing the doors into the campus buildings. The self-
reported accuracy of the GPS unit averaged around
10m for all of our data collection.

We recorded our data using the UTM coordinate
system. The UTM system breaks the globe into
zones, or bands running north to south. A location is
defined by its zone, an easting and a northing. The
easting represents the distance from the edge of the
zone, while the northing gives the distance from the
equator.

3.2 Processing Techniques

Once we had gathered our raw data, we needed to
make a number of additions and changes to prepare
it for screen display and path computation.

3.2.1 Hand Cleanup (First Pass)

Our raw GPS data was surprisingly good, but it
still contained a number of erroneous data points. At
this point we had a preliminary GUI that allowed us
to view the data as a collection of numbered points
and lines. Given this view, it was relatively easy to
identify the erroneous data points visually and then
remove them by hand.

In addition to the erroneous data points, the raw
GPS data is presented as one unbroken line. The
result is long segments connecting the end of one
path to the beginning of another. We divided the data
into the individual paths again by visual examination
of the data.

3.2.2 Line Intersection

Our next task was to find the points at which the
paths intersected. Because the number of points in
our data set was small, we decided to do this us-
ing a brute-force algorithm. Each path is made up
of a number of straight line-segments, so we sim-
ply check each segment for intersections with ev-
ery other segment. If an intersection is found, that
point is added to both paths. This operation isO(n2)
wheren is the number of line segments.

3.2.3 Hand Cleanup (Second Pass)

Figure 1: In the raw path data, some paths end a bit
too soon, while others end a bit too late.

While GPS did a very good job of gathering data
with good relative positioning (straight paths are
straight and curved paths curve where they are sup-
posed to), it did a much poorer job at absolute posi-
tioning. As a result, paths often end slightly before
or slightly after they should (see figure 1). We used
our preliminary GUI to visually identify where these
problem areas were. We then added or removed
points from the data by hand, as appropriate.



3.2.4 Adding Doors and Indoor Paths

As noted above, we gathered individual points
marking the entrances to buildings in addition to
our path data. Unfortunately, due to the absolute
positioning problems with the GPS data, many of
these points were significantly wrong. Based on our
knowledge of the buildings on campus, we were able
to identify which doors points were worth keeping
and which we needed to be adjusted manually. GPS
does not work inside, so we needed to add indoor
paths by hand. We approximated these based on our
knowledge of the buildings and the locations of the
doors.

3.2.5 Creating a Graph

Finally, with all the paths and intersections in
place, we needed to convert our data into a graph
that that we could use to compute shortest paths us-
ing Dijkstra’s algorithm. As our data was then, a
single path could contain multiple vertices and span
multiple edges. We needed to segment it so that each
path corresponded to one edge in the graph, and each
endpoint corresponded to a vertex in the graph. With
the data in this format, it was relatively easy to build
the graph structure in one pass through the data.

Figure 2: A simple graph.

Our graph is implemented as Python dictionary
(essentially a hash table) where the keys are vertex
IDs for every vertex in the graph and the value is
a dictionary where the keys are vertex IDs for all
connected vertices and the value is the weight of the
corresponding edge. Because hash table lookups can
be done in constant time, building the graph is an
O(n) operation wheren is the number of paths.

{‘A’: { ‘B’: 3, ‘C’: 2},
‘B’: { ‘A’: 3, ‘C’: 1},
‘C’: { ‘A’: 2, ‘B’: 1}}

Figure 3: An example of our graph representation
describing the graph displayed in figure 2

3.3 Computing the Path

Now that we have constructed our graph, we can
compute the shortest path between any two vertices
using Dijkstra’s algorithm (Dijkstra, 1959). Dijk-
stra’s algorithm, left to its own devices, will com-
pute the entire minimum spanning tree of a graph,
starting at a given node. Since all we care about is
a single shortest path, we can stop computation as
soon as our destination vertex is added to the tree.

The algorithm is simple, and can be easily imple-
mented in Python. To begin, the algorithm sets the
distance to the start vertex as 0 and the distance to
all other vertices as∞. Initially, the tree contains
only the start vertex. The algorithm proceeds by in-
crementally adding adjacent vertices to the tree until
every reachable vertex is added. The next vertex to
be added to the tree is always the vertex whose ad-
dition will minimize the length of the longest path.
Refer to figure 4 for an example.

4 Results

4.1 Raw Data

Figure 5: The raw path data from the GPS unit.



(a) Step 1 (b) Step 2 (c) Step 3

(d) Step 4 (e) Step 5 (f) Step 6

(g) Step 7

Figure 4: A trivial example of the execution of Dijkstra’s algorithm.

Figure 5 shows our raw path data. The map is
clearly recognizeable as the Swarthmore campus,
but there are many flaws to be corrected. We can see
several immediate problems with this data. Some
paths that should intersect fall short and do not meet.
Other lines do intersect, but extend past the intersec-
tion when they should end. Lastly, some points are
clearly inaccurate by a large margin causing spikes
in a few of the paths.

4.2 GUI

Once we had all of the underlying structure built, we
created a GUI to concisely present all of the data and
provide an easy method for getting user input. The
GUI is comprised of three distinct areas.

Map canvas The largest and most important part of
the GUI is the map canvas. This is where the
map is displayed and the user can select the
start and end points of their desired path. Once
two points are selected, the shortest path is cal-
culated based on the current Blaha factor and
drawn own the map.

Status bar Along the bottom of the window, the
status bar displays the current x- and y-
coordinates of the mouse pointer as well as the
current Blaha factor.

Input area To the right of the Map canvas, the input
area allows the user to change the Blaha factor

and reset the map.

5 Discussion

Our final product is an interactive tool for shortest
path routing on the Swarthmore campus. Though it
might seem that the tool would be superfluous given
the familiarity of students with the campus, anec-
dotal evidence shows that some shortest paths, es-
pecially with modified Blaha factors, are surprising
even to Swarthmore students.

Though our map is created from GPS data, there
are several possible sources of inaccuracy which
might affect the shortest path calculations. For one
thing, the lengths of the indoor paths are only esti-
mated, and do not take into account stairs that must
be climbed or doors that must be opened. We also do
not consider elevation for the outdoor paths, though
this is unlikely to make a significant difference.

There is a potential to expand our tool in a vari-
ety of directions. For instance, we could expand our
map to cover a greater portion of Swarthmore Col-
lege and the surrounding areas. We could allow the
user to specify which buildings he could not pass
through due, for instance, to not having a key. We
might also be able to improve the accuracy of the
door data points by sampling several points at the
doors and averaging their positions.

Though the methods we used for creating a
searchable map of the Swarthmore campus worked



(a) The shortest path with the Blaha factor set to 1. (b) The shortest path with the Blaha factor set to 0.1

Figure 6: The final display given by the GUI, showing the shortest pathsfrom the Science Center to the
McCabe Library with the Blaha factor set to 1 and 0.1.

for this task, they would not be scalable. This is due
to the large amount of hand cleanup involved. How-
ever, the amount of error present in the GPS data we
obtained necessitates this hand clean-up. It seems
that the task of creating a map of the type we present
for a larger area would require a different approach.

6 Conclusion

We present in this paper an interactive path finding
tool for the Swarthmore College campus. The tool
allows for differential treatment of indoor and out-
door paths, allowing the use to specify a preference
for travel. Though the methods that we used for cre-
ating the map and searchable graph would not be
scalable to larger maps, the techniques were effec-
tive for our task. Our interactive GUI allows the
user to discover efficient paths which are occasion-
ally surpsising even to individuals familiar with the
area.

References

E. W. Dijkstra. 1959. A Note on Two Problems in Con-
nexion with Graphs.Numerische Mathematik, 1:269–
271.

US Army Corps of Engineers, 2003.Engineering and
Design - Navstar Global Positioning System Survey-
ing, July.


