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Abstract

Most current flow routing algorithms use
digital elevation models (DEMs) to con-
struct flow models. In order to success-
fully use current techniques for flow rout-
ing, they flood local minima and then find
a way of routing the flow across the flat
surfaces. In this paper, we examine an al-
ternative method for computing flow rout-
ing on these flooded surfaces that takes
into account the original elevation data.
Our approach is based upon Dijkstra’s sin-
gle source shortest path algorithm. We set
the distance between two adjacent cells to
be the elevation of one of the cells. While
our results are not yet ideal, altering our
distance formula shows promise for im-
provement.

1 Introduction

A current problem in geographic information sys-
tems is the automatic extraction of river networks
from a set of elevation data using the method of flow
accumulation. Calculating river networks is useful
in determining flood insurance zones.

The basic idea for solving this problem is rela-
tively simple: for each elevation point, route flow to
the neighbor with the steepest downhill slope. This
method is effective as long as there are no local min-
ima. Local minima will be pits or valleys in which
the water will get trapped. Ideally, all water should
flow to some outlet point at the edge of the grid.

Current algorithms (Jenson and Domingue, 1988;
Garbrecht and Martz, 1997; Soille and Colombo,
2003) tend to deal with this problem by flooding the
minima until they are all removed. This approach is
justified by the assumption that minima are the ac-
cidental result of poor sampling in the original data.
However, this is not always the case. Many minima
are caused by large-scale terrain features, such as a
bridge over a river. When these minima get flooded,
useful information about the underlying river is lost,
as can be seen in Figure 1.

These flooding algorithms create large flat sur-
faces, which cause a new problem in flow rout-
ing. Without a steepest downslope neighbor it is
not immediately obvious in which direction the wa-
ter should flow across the surface.

Several algorithms have been developed that at-
tempt to solve the problem of flow routing over flat
terrain. A side effect common to all these algorithms
is that they fail to use information about the original
terrain with their flat terrain flow routing algorithms.
We have developed an algorithm to route flow across
flat surfaces that takes into account the original ter-
rain. This provides river networks that more accu-
rately match reality.

2 Related Work

Current algorithms for solving this problem do not
produce ideal results. Jenson and Domingue (1988)
focussed mainly on flooding and their method for
flow routing on flat surfaces was not very involved.
For each point on a flat surface, they assigned the
flow to be in the direction directly towards the out-
let. This resulted in artificial looking river networks



Figure 1: Original and flooded elevation data

because of long stretches of parallel lines.
Garbrecht and Martz (1997) improved upon this

algorithm by not only routing flow towards the out-
let, but also away from the bordering high terrain.
This provided more natural looking river networks.
However, as these river networks do not take into ac-
count the underlying elevations, they do not always
accurately model the true flow of water in the region.

Soille et al. (2003) proposed the method of carv-
ing as opposed to flooding for removing minima,
which reduces the number of flat areas. They also
proposed a flat terrain flow routing algorithm that is
an improvement on Garbrecht and Martz’s method.
Although Soille’s algorithm is an improvement, it
has the same fundamental issues as that of Garbrecht
and Martz.

3 Methods

Our algorithm focuses on improving flow routing
over flat terrains. To accomplish this, we use both
the flooded terrain information and the original el-
evation data. The flooded terrain indicates the ar-
eas on which to concentrate, and the original terrain
provides the elevation data needed for our method.
We use Dijkstra’s algorithm to calculate the short-
est path to the spill points. We vary the metric for
computing the distance between two adjacent cells.

We begin with digital elevation models in the
GRASS ASCII format: one of the original terrain
and one with the local minima flooded. We find the
spill points, cells adjacent to the flooded terrain with

lower elevations.

We used a single source shortest path algorithm
to calculate flow directions for flat areas. This al-
gorithm treats our grid as a connected graph where
each cell is connected to its eight neighbors. The
weights of the edges can be chosen independently
of the algorithm, and we experiment with several op-
tions.

To compute the single source shortest path, we
used Dijkstra’s algorithm. The algorithm begins by
initializing all the path lengths of any cell to the spill
point to infinity. We create a priority queue that con-
tains the spill points, and set their path lengths to
zero. We continue extracting the point from the pri-
ority queue with the minimum path length until the
queue is empty. Each time we remove a point, we
look at each of its neighbors and update their paths
if the path through the current point is shorter than
the stored path. We then add each updated neighbor
to the priority queue.

When the algorithm is finished, the result is a for-
est that spans the area of interest, where each tree is
rooted at a spill point. The leaves of the trees are the
points farthest away from the spill points. The path
from a node to the root of a tree is the shortest path
to a spill point.

We can use these trees to calculate flow accumula-
tion. We imagine that a unit of water falls onto each
cell in the grid. Using the flow directions of each
cell, we can determine the amount of water that ac-
cumulates in each cell. Letp be any cell andF (p)



Figure 2: River networks and flow directions using the Euclidean distancemetric

Figure 3: River networks and flow directions using Soille’s algorithm

be the set of cells flowing intop.

acc(p) = 1 +
∑

q∈F (p)

acc(q)

We calculate the flow accumulations of a node in
the forest as the sum of the flows of each of its chil-
dren plus one. A grid showing cells whose flow ac-
cumulations are greater than some threshold should
show the locations of the rivers of the terrain.

Our algorithm outputs GRASS ASCII files with
the flow directions and the flow accumulations at
each cell of the grid. We represent flow direction
with numbers 1 through 8, corresponding to the
eight possible directions of flow. We create river
networks based on the set of points with flow ac-
cumulations over a given threshold.

3.1 Metrics

Below we present the weights used to determine the
distances between cells for the Dijkstra’s algorithm.
In all cases, we added an extra weight of

√
2 to di-

agonally adjacent cells to account for the difference
in Euclidean distance.

3.1.1 Euclidean Distance

The simplest method we used was setting the dis-
tances between adjacent cells to 1. This resulted in
the Single Source Shortest Path (SSSP) method, as
used by Jenson and Domingue (1988). In effect this
method just computes the shortest Euclidean dis-
tance from any point to the spill points, and routes
flow over that path.



Figure 4: River networks and flow directions using the elevation distance metric

Figure 5: River networks and flow directions using the translated elevationdistance metric

3.1.2 Soille’s Algorithm

The flat terrain flow routing algorithm introduced
by Soille (2003) is designed to route flow through
the center of the terrain and avoid having straight
parallel lines. We calculate the distance,d(c) from
each cell to the border of the flat terrain using a
breadth first search away from the border. Letc be a
cell andC the set of all cells.

w(c) = max{d(f)|f ∈ C} + 1 − d(c)

3.1.3 Elevation

Our first metric that uses the original elevation
data sets the distance between any two adjacent cells
to the elevation of the cell flowed to. Thus, the to-
tal distance from a cell to the spill point is the sum

of the elevations of the cells traversed. This encour-
ages the flow to travel down to lower elevations, as
well as traversing a small number of cells between
the source and the spill points.

3.1.4 Translated Elevation

To weight more heavily the importance of flow-
ing across low elevations, as opposed to traversing
short distances, we translate the elevations of all
cells down by the minimum elevation over the rel-
evant area. Thus, the weight of a cell is the differ-
ence of the elevation of the cell and the minimum
elevation.



Figure 6: River networks and flow directions using the squared translated elevation distance metric

Figure 7: River networks and flow directions using the fourth power of the translated elevation distance
metric

3.1.5 Power of Translated Elevation

Raising the translated elevation to a positive
power puts a greater penalty on higher elevations.
This further encourages flow to follow low eleva-
tions. A greater power will put more emphasis on
traveling on low elevations.

4 Data

We used raster data of the North Carolina river basin
at 10 foot resolution. We used both the original ele-
vation data and elevation data of the terrain with the
sinks flooded.

5 Results

For each metric, we show the river networks and
flow directions. In computing the river networks,
we used an accumulation threshold of 150 cells
(150,000 ft2). In the flow directions figures, each
color indicates a different flow direction.

The results of using the Euclidean distance metric
are shown in Figure 2, Soille’s algorithm in Figure
3, the elevation metric in Figure 4, the translated el-
evation metric in Figure 5, the squared translated el-
evation metric in Figure 6, and the fourth power of
the translated elevation metric in Figure 7.



6 Discussion

As can be seen in Figures 2 through 7, the results
improve with each alteration of our algorithm, even-
tually producing natural looking river networks that
follow the elevations of the original terrain.

By comparison, the Euclidean metric (Figure 2
fails to produce natural looking or accurate rivers.
The flow is routed in straight parallel lines and
hugs the boundaries of the region, as the algorithm
searches for the shortest Euclidean distance.

Soille’s algorithm (Figure 3), on the other hand,
produces more natural looking river networks. How-
ever, as this algorithm fails to take into account the
original elevation data, the rivers do not follow the
terrain features. As an example of this behavior, ob-
serve the oxbow near the center of the region. Rather
than following the bend in the river, the river stays
in the center of the region.

Each of Figures 5 through 7 shows an improve-
ment on the previous river network. As you can
see in Figure 7, our river network both looks natural
and accurately models the terrain. Our river network
tends to stay in the lighter yellow areas, which cor-
responds to the lowest elevations in the region.

From the river networks in Figure 7 it can be seen
that our algorithm tends to perform better on lower
elevations than on higher ones. This is a result of
translating the elevations by the minimum elevation
of the region. While this translation succeeds in
appropriately weighting elevation against Euclidean
distance at lower elevations, this balance too heavily
in favor of Euclidean distance at higher elevations.

7 Future Work

We would like to develop a distance metric that does
not have the drawbacks at higher elevations that our
current algorithm displays. To accomplish this, we
have experimented with other distance metrics with-
out success. We began by taking the exponential of
the elevation, but discovered that this this resulted
in numbers that overflowed Python’s float type. We
would like to experiment with the taking the differ-
ences of elevations of neighboring cells.
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