
Bridge Detection from Elevation Data
Using a Classifier Cascade

Anthony Manfredi
amanfred1@swarthmore.edu

Alexandr Pshenichkin
apsheni1@cs.swarthmore.edu

Abstract

Bridges and similar non-obstructing features
inhibit correct flow routing on high-resolution
digital elevation models because their apparent
elevation does not reflect the elevation at which
water may pass underneath them. Our goal is to
identify such features using the elevation data
so that flow-routing algorithms may find paths
under them correctly. We use an algorithm
based on Viola and Jones’ object-recognition
system. Simple filters are applied in sequence
to efficiently narrow the search space down to
a final set of likely candidate features. This pa-
per presents a successful system for identifying
bridges that can be fairly easily integrated into
existing GIS systems.

1 Introduction

New hi-res terrain scanning techniques such as laser al-
timetry (lidar) have greatly expanded the accuracy of
GIS. The improved resolution has introduced many new
details into digital elevation maps; many such features,
however, hinder analysis of the underlying bare-earth
terrain. One of the most important problem features
are bridges. From the air, a bridge appears as a solid
ridge, but, in reality, water can pass beneath it. While
a raw data dump may contain some points that are visi-
ble underneath a bridge, current preprocessing techniques
will tend to remove these, leaving a solid obstacle on
the processed digital elevation model (DEM). This con-
fuses flow-routing algorithms, which must flood terrain
or search for convoluted detours to escape the local min-
imum created by the presence of the false ridge. Our
goal is to identify bridges and similar features, such as
drainage tunnels, on digital elevation models, so that wa-
ter flow can be routed through them. Appropriate flow
routing can be accomplished with minimal modification
of existing algorithms by simply cutting through a bridge
once it is marked out.

1.1 Related Work

Sithole and Vosselman (Sithole and Vosselman, 2006) de-
scribe a system for the geometric recognition of bridges
as part of a general system for creating bare-earth data

from raw lidar input. Their system looks for features that
drop off sharply on two sides and fade smoothly into the
surrounding terrain on the others. Calculating and ana-
lyzing bounding polygons for terrain features, however,
is computationally intensive.

Our algorithm is inspired by computer vision research
by Viola and Jones (Viola and Jones, 2002). Their sys-
tem utilizes a “cascade” of simple filters, each of which
is sensitive to a specific pattern. The algorithm reliably
recognizes faces in real-time video. They also suggest a
technique for fast computation of rectangle sums, called
the integral image method. Each pixel in the integral im-
age is the sum of the values of the pixels above and to
the left of its location in the original image, which allows
any rectangle sum to be computed with only four addi-
tion operations if the integral image already exists. This
technique allows us to quickly calculate statistics for sub-
sections of the map. For example, finding the average el-
evation in a ten-by-ten square area conventionally would
require adding together one hundred values; with the inte-
gral image method, we need only access four values (the
corners of the box) to get the area sum.

2 Methods

2.1 Algorithm

Our system is an implementation of the cascade concept
of Viola and Jones in a novel domain. A sliding win-
dow moves over the map, examining small sections of
the terrain in sequence. The window may move one or
several pixels at a time: this is the step size of the win-
dow. A larger step size decreases runtime significantly
but also decreases accuracy. Empirically we determined
that a step size of 2 pixels did not result in a significant
decrease in accuracy.

Each window is passed through a series of filters. A
filter is a function that evaluates the pixels within the win-
dow statistically or geometrically and decides to accept or
reject the slice. To save storage space, the algorithm ap-
plies all the filters to each window in order before mov-
ing on to the next; this way, no intermediate candidate
lists (which could be quite large) are stored in memory.
If any filter rejects the slice, it ceases to be relevant and
the window moves to the next target. Like in the Viola-
Jones algorithm, the collective action of the filters makes
up for their individual inaccuracy. It is important for each



individual filter to have a very low rate of false negatives,
so that they do not reject good candidates prematurely.

In order to accommodate bridges of varying sizes, we
make several passes over the map, changing the scale
of the window each time. One can reasonably expect
bridges to be at least one car lane and no more than a
dozen lanes wide, and filters must take in some of the sur-
rounding area for comparison as well. We are currently
using window sizes of 100, 150, 200, 250, 300, and 400
feet in an attempt to accommodate all reasonably-sized
bridges.

2.2 Filters

We have implemented several filters to detect bridge-like
features. Since the overall goal is to aid hydrological
modeling, we focus on discovering terrain elements that
have a strong effect on existing flow-routing algorithms
and trying to identify them as bridges.

1. Thehigh gradientfilter accepts an image if at least
ten percent of the pixels in the filter window have
a gradient above a certain threshold. Currently this
threshold is 2.4 feet of elevation per 10 feet of trans-
lation (empirically determined), but we may adjust
it in the future and analyze how it affects our re-
sults. This filter is designed to find the steep edges
of bridges.

2. Theflood fill filter accepts an image if at least thirty
percent of the pixels in the filter window were flood-
filled by a flow-routing algorithm. This filter is de-
signed to capitalize on the fact that bridges in gen-
eral, and particularly the bridges that we want to re-
move to do correct flow routing, cause flood filling
along their length.

3. Theminimum fill depthaccepts an image if there is
at least one pixel in the window that was flood-filled
higher than 8 feet. This filter is designed to focus on
areas that are significantly problematic for hydrolog-
ical modeling.

4. The low gradientfilter accepts an image if at least
twenty percent of the window area is low gradient
pixels, where the low gradient threshold is 0.5 feet
of elevation per 10 feet of translation. This filter is
designed to look for the flat area of the bridge itself.

5. Theminimum elevation differencefilter accepts an
image if the difference in elevation between any two
pixels in the window is above 7 feet. This filter capi-
talizes on the fact that bridges will be elevated above
the surrounding terrain.

6. Theheight bridge shapefilter accepts an image if a
stripe down the middle third of the image matches

Figure 1: A DEM with hand-labeled features.

a low:high:low elevation pattern when compared to
the average elevation the entire window. This filter
is rotated eight times at pi/8 radian intervals to catch
varying bridge orientations. If any of these rotated
filters match, the image is accepted. This filter is
designed to find an elevation pattern that looks like
a bridge: high in the middle and lower on the sides.

7. Much like the height bridge shape filter, thegra-
dient bridge shapefilter accepts an image if a
stripe down the middle third of the image matches
a high:low:high gradient pattern, using the same
thresholds for low and high gradients that were used
in the previous gradient filters. This filter is also ro-
tated in the same manner as filter 6. This filter is
designed to find a gradient pattern that looks like a
bridge: flat in the middle and sharp on both sides.

3 Results

We focused our testing on an area outside Durham, where
Interstate 85 crosses highway 70. The combination of
multiple roadways and a winding stream produce numer-
ous interesting features to analyze.

Figure 1 shows a DEM of the area with hand-labeled
features. Notable elements in this image are:

• Feature 1 (seen in detail in Figure 2) is a drainage
pipe under a roadway. While shaped very differently
from a bridge, it serves the same hydrological pur-
pose, allowing water to pass beneath it.

• Features 2, 3, 4, and 5 are, very distinctly, bridges.
Some (particularly 2 and 5) appear to have been pre-
cut. While it appears to be less pronounced than the
others, Feature 4 has not been cut by the preproces-
sor, so it is of interest to us.



Figure 2: A drainage pipe under a roadway, correspond-
ing to Feature 1 from Figure 1. Picture from Google
Maps.

• Feature 6 is a set of small roadways, possibly with
bridges.

• Feature 7 is an elevated interchange with a stream
flowing underneath it. The exact pattern of flow is
difficult to discern from lidar and satellite maps, but
it is clear that part of this structure needs to be cut.

• Feature 8 is a roadway over an obvious depression.
The sharpness of the cutoff between the road and the
surrounding terrain indicates that the road is likely to
be raised above the ground prominently here.

• Features 9 and 10 represent areas where a roadway
seems to have been completely wiped out by the
river, probably in the interpolation step. These are
bridge-like features, but our algorithm should ignore
them in the end.

Figure 3 shows the results of filtering our data set and
grouping the selected locations using the built-in visual-
ization tools in the GRASS software package. The algo-
rithm clearly labels the large uncut bridge-like features in
the image, such as the interchange and the drainage pipe,
and avoids several pre-cut bridges. It correctly identi-
fies the uncut bridge labeled 4, above, as a noteworthy
feature, and isolates several small bridges in the tangle
of elements labeled hand-labeled as feature 6. Features
9 and 10, already deeply cut, are ignored. Overall, the
computer-generated map seems to capture all of the rele-
vant features except for a few ambiguous parts of area 6,
while ignoring already-cut bridges and generating fairly
little noise.

Performing the feature extraction on this relatively
small (609180 cells) map took 6m 45s. We expect com-
putational complexity to be linear with respect to the

Figure 3: A comparison of hand-labeled (dark) and
machine-detected (light) features.

number of cells. This bears out in practice: it takes 25
minutes to process a 21117520-cell grid with our system.

Figure 4: DEM of a road over a ravine in an urban area,
demonstrating the shortcomings of the algorithm. Several
bridge-like structures are correctly labeled, but these are
also many false positives caused by trees in the ravine.

Figure 4 shows a less functional job. This time, the
algorithm has identified a series of noisy-looking areas
along what looks like a stream as being bridges, as well.
Analysis of the image area reveals that the area isn’t con-
ventionally filled with water, however: the grainy lumps
that have been labeled as bridge-like objects that impede
the flow of water are actually trees in a ravine. While the
image of all those areas being selected as good areas is
rather unsightly, most represent terrain artifacts that can



Figure 5: The bridge detection algorithm applied to a
larger area. Note the tendency to over-select low areas
when they are not uniform.

easily be cut; those that don’t are actually major features.
Figures 5 and 6 demonstrate similar results with larger

data sets. There are quite a few false positives overall, but
numerous bridges are correctly detected.

4 Conclusion and Future Work

Overall, our algorithm seems quite effective in detecting
bridges and similar features that impede flow routing on
high-resolution DEMs.

Experimenting on other data sets, however, revealed
that the algorithm is fairly sensitive to input error. While
noise mostly just impairs its ability to detect useful fea-
tures, errors that produce regular patterns will often lead
to numerous false positives. This problem occurs because
our program is searching for regular, mostly-linear fea-
tures, which can be introduced into the image as artifacts
during the various stages of preprocessing if the raw data
is sufficiently poor. It should be noted that, while such
results include a lot of false positives, most of those are
clustered around image artifacts, so cutting through such
areas shouldn’t deform the actual map very much. Very
few false positives generated by our algorithm are ac-
tually objects that would greatly affect the hydrological
model if cut.

The computation time currently leaves something to
be desired, however. While the integral image method
speeds up the first few statistical filtering steps, we cur-
rently use naive techniques to find local extrema – these
cost us a lot of time spent rescanning the same pixels
as the window moves across the map. Finding the ex-
treme value for a strip of data at a time and then sim-
ply taking the extrema of those could greatly speed up
the execution of this stage. For the shape filters, a more
computationally-efficient way to perform the required ro-
tations would be ideal. Overall, the computational over-

Figure 6: The bridge detection algorithm applied to a
large area with a very complex road network. While the
system is incapable of puzzling out the interchange, it
does identify a large number of bridge-like features (and
a few false positives).

head of running the algorithm could probably be signifi-
cantly reduced by running it as part of another window-
sweeping algorithm and reimplementing it in C/C++.

It may be possible to get improvements in accuracy by
running this algorithm iteratively with a bridge splicer,
recalculating the flood fill depth after the removal of the
current target bridge. Such a system would require a lot
of repetitive computation, however.

Since most of our false positives seem to come from
artifacts in the DEM, we believe that simply cutting the
regions identified by our algorithm, even if the detected
feature is not a bridge, will improve flow-routing.

References

G. Sithole and G. Vosselman. 2006. Bridge detection
in airborne laser scanner data.ISPRS Journal of Pho-
togrammetry and Remote Sensing, 61(1):33–46, Octo-
ber.

Paul Viola and Michael Jones. 2002. Robust real-time
object detection. International Journal of Computer
Vision - to appear.


