
Border Patrol

Shingo Murata
Swarthmore College

Swarthmore, PA
19081

smurata1@cs.swarthmore.edu

Dan Amato
Swarthmore College

Swarthmore, PA
19081

damato1@cs.swarthmore.edu

Abstract

We implement a border patrol program
that computes ideal locations for observa-
tion towers overlooking a border of inter-
est. In this particular project, we study
the border of Arizona facing Mexico. We
use GRASS to manipulate elevation raster
data. Our algorithm extracts the border
from a raster file and locates candidate po-
sitions for observation towers along that
border. The viewshed of each observa-
tion tower is computed with a direct line of
sight algorithm. We employ a tower place-
ment algorithm to select only the neces-
sary towers from the set of all candidate
towers. Our algorithm selected 92 towers
within a 5km zone from the border to pa-
trol the approximately 680km border.

1 Introduction

Border patrol is a common interest involved in na-
tional security. Militaries are frequently concerned
with detecting threats along the extent of a particular
border as completely and efficiently as possible. It
is important that border security can be established
cost-effectively as well. We model this problem as
the task of placing the minimum number of towers
necessary to view the entire border of interest within
some range of that border.

Current GIS technology makes it possible to au-
tomate the process of planning optimal locations for
border observation towers. In this paper we develop

algorithms to automatically extract a border from a
raster file, find candidate tower locations near the
border, and select the optimal set of towers that is
capable of observing the entire border.

Elevation data for many areas of interest are read-
ily available on the Internet. We use the Geographic
Resources Analysis Support System (GRASS) for
data manipulation. GRASS is suited for this project
because it has full functionality in visualizing eleva-
tion, data conversion, and I/O support for ascii files
that are compatible with our C programs. With an
abundance of digital elevation models in raster for-
mat and the software tools to manipulate them, we
can successfully apply useful viewshed computation
algorithms to the problem of finding the optimal set
of observation towers.

The viewshed of a view point is the set of points
in the terrain model that can be observed from that
point. Viewshed computation is central to the au-
tomation of these algorithms because it is essential
to know which border points a candidate tower is ca-
pable of observing. Our tower placement algorithm
involves the iterative selection of candidate towers
with the greatest contribution of yet unseen border
points to the current optimal set of observation tow-
ers.

There are several parameters involved in tower
placement. One of our goals is to minimize the num-
ber of towers we need to observe the entire border.
This number is dependant both on the height of the
towers and the maximum distance they are allowed
to be placed from the border. As the height of the
towers is increased, the number of necessary tow-
ers decreases, but the cost of each tower increases.

Finding a cost-minimizing solution would involve
balancing these factors. Increasing the distance from
the border in which towers can be placed may incor-
porate useful elevation maxima into the model that
were previously out of range. The gains from this
are limited by atmospheric conditions that limit vis-
ibility and, ultimately, by the curvature of the Earth.

We begin by reviewing the viewshed algorithm
presented by David Izraelevitz in (Izraelevitz, 2003).
We then describe in detail the three major steps in
our project: border extraction, viewshed computa-
tion, and tower placement. Finally, we present the
results in section 4.

2 Related Work

Several algorithms for computing the viewshed of
a point are presented in (Izraelevitz, 2003). The
first method presented is direct computation. This
method essentially checks each possible obstruction
on a line from the view point to the target point. If
there are no obstructions along this line, then the tar-
get point is considered visible. This algorithm is
straight forward, but is computationally inefficient,
because it requiresO(n) computations for each grid
point on ann x n field, resulting in anO(n3) algo-
rithm.

The Xdraw algorithm employs the Line of Sight
(LOS) function to compute the viewshed of a view
point. This algorithm is faster than the direct method
because it stores previous results that can be utilized
at the next stage of computation along the same line.

The final algorithm improves the Xdraw algo-
rithm by introducing a backtracking method to re-
duce the number of interpolations and increase the
accuracy of the LOS calculations. If any point along
the line between the view point and the target point
coincides with a grid data point, that data point is
used to initialize the LOS computation. Otherwise,
the algorithm backtracks a specified distance and
initializes the computation with an interpolated LOS
value.

To determine border visibility, we do not need
to compute the entire viewshed from a given view
point. We only need to determine whether target
points on the border are visible from a tower’s view
point. It is irrelevant to know whether the points be-
tween the observation tower and the border are vis-

ible. This negates the benefits of the Xdraw algo-
rithm which are based on a fast incremental compu-
tation. We implement and use the direct algorithm
because its inefficient computation is mitigated due
to the limited number of points we are examining.
In addition, its accuracy is superior to Xdraw.

Vincent presents an alternative viewshed algo-
rithm based on ray casting in three dimensional
polygonal models in (Vincent, 1999). The algorithm
is based on a hierarchical partitioning of three di-
mensional space. This partition is represented by a
k-d tree. The hierarchical partitioning of the space
continues until the model of the terrain is enclosed
in appropriate bounding boxes. This hierarchical
structuring of the space allows Vincent to increase
the search speed for view obstructions. Other opti-
mizations include a backface culling mechanism to
remove irrelevant surface polygons from the search
space and a parallelization of the algorithm. Vincent
also sets up an error vs. speed tradeoff by adaptively
spacing the rays used to test for intersection. As the
number of rays increases, accuracy improves at the
cost of increased execution time.

3 Methods

Our automated border patrol algorithm has three
main phases. First, the relevant border must be ex-
tracted from the data. Second, the set of candidate
towers must be determined, and the viewshed of
these towers must be computed. Finally, the tower
placement algorithm must select the optimal set of
observation towers from the entire set of candidate
towers. These selections are based on the visibility
characteristics of the candidate towers. These steps
are elaborated below.

3.1 Border Extraction

To patrol the border, we first need the coordinates of
each point on the border. It is not trivial because the
digital elevation model contains no information re-
garding the border. Since we are looking at the Ari-
zona border for this particular experiment, and Ari-
zona has a straight border facing Mexico, we could
have figured out the equation for the line. However,
this method would severely restrict the type of bor-
der we can patrol. Therefore, we present an algo-
rithm to extract a border in general.

Figure 1: Start List Construction

Although we have no information about the bor-
der in the raster file, we do have a vector file that
traces the border. We begin by converting the vector
file into raster format using GRASS. Raster cells on
the interior of the border are marked with a 1, while
raster cells exterior to the border are marked with a
NULL flag. We then output the raster to an ascii file,
giving us a file of 1’s and NULL’s. Our algorithm
defines aborder candidate to be a point whose own
value is 1, and also has at least one neighbor that is
NULL.

Since we are working with a section of the border,
we need to specify the start coordinate and the end
coordinate. The algorithm checks the 8 neighbors of
the start point. If any of them are border candidates,
the points are added to thestart list. It also marks all
8 neighbors as “visited”. Figure 1 displays the state
of the algorithm after the start list has been created.
The grey cells are those that have been added to the
start list.

For each point in the start list, our algorithm
works as follows:

1. Dequeue a point from the start list. Call itp.

2. Look at the 8 neighbors ofp, and find border
candidates that havenot been marked as “vis-
ited” yet. If there are any such points, add them
to a work list. The work list is implemented as a
linked-list queue, as is our temporary “border”
described below.

3. Dequeue the first point from the work list and
mark it as “visited.” Add the point to the tem-
porary border linked list. Call this pointp and

then repeat step 2. Continue until the work list
becomes empty or we hit the “end” point.

4. If the work list has become empty without
reaching the end, we scrap that temporary bor-
der. If we hit the end point, we have detected
a potential border. In either case, we restart the
process from step 1 with another start point, un-
til we exhaust all the start point possibilities.

Once all start points have been expanded, we may
have two valid borders: one for each of the two
directions along the border that lead from the start
point to the end point. We must determine which
of the two potential borders is the real border of in-
terest, and which is simply the remaining border of
the region which excludes the border of interest. For
now, we make this decision by simply choosing the
shorter border.

We then copy the linked list into an array, as ar-
rays are easier to work with for our purpose. At this
point, each border cell all has height of 1 since they
were extracted from the 1 or NULL raster. It is im-
portant that we go through the actual elevation raster
and set the elevation of these border points to their
true values.

At this point we have extracted the border be-
tween the start point and the end point. We also de-
fine thezone in which towers may be placed. This
zone is a band of specified width along the extracted
border and inside of the “home” territory. To find
the points falling in this zone, we essentially per-
form a breadth first search of the 1 or NULL raster.
We begin with the extracted border points, and add
them into a queue. While the queue is not empty
and the specified width has not been reached, we de-
queue a point from the queue. This point is flagged
as “visited,” and all of its unvisited, home territory
neighbors are added to the queue. All of the points
in the zone are stored in an array for future use.

3.2 Viewshed Computation

The viewshed of a view point in a terrain model is
the set of all points visible from that point. To patrol
the border we do not need to compute the full view-
shed of a tower location. We only need to compute
the visibility of points on the border. If a set of tow-
ers can collectively view each border point, then the
border is considered to be fully patrolled by that set.

As we are not interested in computing the full
viewshed of potential tower points, but only the
visibility of the border points, we do not need the
optimized approximation algorithms presented in
(Izraelevitz, 2003). We can afford to simply com-
pute the visibility from the potential tower point to
each target border point. The relevant points in the
viewshed computation are the view point,pv, the tar-
get point,pt, and the point of potential view obstruc-
tion, p. The visibility of pt from pv can be deter-
mined with equation 1.

elv(pt) > elv(pv)+
|pt − pv|

|p − pv|
(S(p)−elv(pv)) (1)

elv(pa) denotes the elevation of pointpa.
|pa − pb| represents the Euclidean distance between
two points,pa andpb. Finally, S(pa) is the inter-
polated elevation of the terrain model at the(x, y)
coordinates ofpa.

This inequality places a constraint on the height
of the target point,pt, based on the elevation data
along a sight line between the view point and the
target point. The inequality generates the minimum
elevation at the target location that is visible from
the view point given the elevation of the potential
obstruction at pointp. If the actual target elevation
is less than or equal to this minimum, then the target
point is not visible from the view point because the
sight line is obstructed by the obstacle at pointp.

To determine the visibility of the target point,
equation 1 must be evaluated at each point,p, along
the sight line between the view point and the tar-
get point. If no point along the sight line obstructs
the view, then the target is visible. We approximate
this test by evaluating equation 1 at regular intervals
along the sight line between the view point and the
target point. The theoretical sight line will fall be-
tween two grid data points in general. The elevation
at pointp is the interpolated elevation of the two grid
data points on either side of the sight line.

The interpolated elevation at pointp and the ele-
vation of the target point are adjusted for the Earth’s
curvature prior to the computation of equation 1.
The curvature adjustment of a pointpa’s elevation,
∆elv(pa), is given by equation 2, whered represents
the quantity|pa − pv|. The geometry of the approx-
imation is illustrated in figure 2.

Figure 2: Geometry of the Earth Curvature Approx-
imation

∆elv(pa) =
√

REarth
2 + d2 − REarth (2)

We use this viewshed computation method to
compute the visibility of each border point from a
potential tower location.

3.3 Placement Algorithm

Our goal is to view the entire border with as few
towers as possible. As noted in section 3.1, there
is a zone of specified width back from the border
in which towers may be placed. We base our tower
placement on the principle that an observer can see
more if s/he is at a higher elevation. We begin by
locating all of the local maxima with in the zone.
A local maximum is defined as a raster cell having
no higher neighbors within the zone. These maxima
serve as the candidate positions of our towers.

We first figure out which candidate towers are ab-
solutely necessary. A candidate is considered neces-
sary if there are points on the border that can only
by seen by that candidate position. Therefore, in-
stead of computing which points each tower would
be able to see, we compute for each point on the
border, which towers can see it (although they are
computationally equivalent).

Figure 3: Example of border visibility state

We maintain a table of integers, with each row
corresponding to a point on the border. In each col-
umn, we keep track of a tower identifier that can
see the point. For each point on the border, we test
whether that point can be seen by each of the can-
didate positions. If the point is visible from a can-
didate tower location, we add the identifier for that
tower to the point’s row in the table.

Our table may look like figure 3, which shows that
the first point on the border can be seen by Tower 0,
the second by Tower 0 and 1, the third by Tower 0,
1 and 2, and so on. Every time a tower is added to
the table, we increment the “score” of that candidate
tower by 1. The score corresponds to the number of
points the candidate tower could see if it were built.

After we have created the table, we traverse the
table to find the border points visible from only one
tower. We know that the single towers that can see
these points are critical. In the table above, for ex-
ample, Tower 0 is critical because it is the only tower
that can see the first point of the border.

Every time we find a critical tower, we add it to
the permanent tower list. Then we traverse the inte-
ger table to “close” all border points that can be seen
by that tower. We traverse the list, find out which
points that tower can see, and, flag that point as “se-
cured.” We also traverse the row for the secured
point, and if any other towers can see it, wedecre-
ment the score of those towers. By decrementing the
scores of these towers, we ensure that the score rep-
resents only the number of unsecured points view-
able from the candidate tower. This prevents redun-
dant towers which can view few new border points
from being selected as good candidates in future iter-
ations of the algorithm. The effect of adding Tower 0
to the permanent list in our example above is illus-
trated in figure 4. The score of Tower 1 is decre-

Figure 4: Example of updated border visibility state

mented by three because three of the border points
it can view are made redundant with the addition of
Tower 0 to the permanent list.

Every time we add a tower to the list, we check to
see if the entire border has been “secured” yet. The
chances are, the border cannot be secured by just
those critical towers. So we move on to the second
phase of the placement algorithm, in which we sim-
ply pick the candidate tower with the highest score
out of the remaining towers (when we put a tower
into the permanent tower list, we set its score to -
1, so we never look at it again). When we add the
tower, we “close” the points it can see as before. We
repeat this process until the entire border is secured,
or there are no more candidate towers to consider.

4 Results

The input raster, which covers the southern half of
Arizona, has 2846 x 5705 data points at 100m res-
olution. When we extract the border, we find that it
has 6768 data points. Out of the 6768 points, 1332
are local maxima, so we begin with 1332 candidate
points for the towers.

We begin by restricting tower placement to points
directly on the border. When we scan for points vis-
ible from only one tower, we find that only 6 towers
are critical. With those 6 critical towers, we can view
844 / 6768 border points. The next tower we place,
the tower with the highest score, can view 619 points
by itself. After securing 6642 / 6769 points, our ad-
ditional towers can only see 5 novel points. We also
need 15 towers that can only see 1 unique point. In
total, we need 120 towers.

When we expand the zone, we have many more
points to work with. Within a 5km zone from the
border, we have more than 370,000 points, from
which we obtain 8974 maxima. While we have

Figure 7: Number of Towers vs. Height of Towers
(meters)

about 50 times as many total data points, we only
have about 7 times as many maxima because we are
now checking all 8 neighbors to test if a point is a
maximum, as opposed to just checking the 2 adja-
cent points on the border. For 20m towers, by ex-
panding the border zone to 5km wide we decreased
the number of necessary towers to 92.

5 Discussion

Considering that the border is approximately 680km
long, the number of towers we need is relatively low.
With 20m towers in a 5km border zone, we need 92
towers. On average, each tower is responsible for
roughly 70 data points, or 7km of the border. The
number of towers seems to be higher than it could
be due to the clusters that we can observe in figure 6.
The clusters suggest that our algorithm may not be
suited to certain geographical features found in these
regions.

Still, we can infer some useful information from
the data. We expected the number of towers required
to decrease as we increased the tower height, but as
we can see from figure 7, it seems to be asymptotic.
In fact, when we tested with kilometer-high towers
(which is absurdly high), we found that we would
still need 23 towers. What it tells us is that after

Figure 8: Number of 20 meter Towers vs. Width of
Border Zone (meters)

Figure 9: Effect of Zone Size on Number of Neces-
sary Towers

Figure 5: Tower Locations Directly On The Border

Figure 6: Tower Locations Within A 5km Zone

Figure 10: Pie Chart Overlay of Zone Point Eleva-
tion, Maxima Elevation, and Tower Elevation

a certain point, we do not gain as much from mak-
ing the towers taller. By comparing our data with
the cost of building towers of varying height, we
can theoretically obtain the optimal tower height in
terms of cost.

We can also see that expanding the zone from just
on the border to some distance away from the bor-
der tends to improve performance. As seen in fig-
ure 9, we can reduce the number of towers (ranging
in height from 10 meters to 100 meters) by between
13.85% and 28.86% by allowing a 5km zone. The
number is bound to be inconsistent, because it de-
pends on how many more important maxima we can
gain by backing up, and the definition of an impor-
tant maxima depends on the tower height. We also
note that this behavior also seems to be asymptotic,
even more so than the tower height. By moving
away from the border, we are expanding the visible
region, but we are also making ourselves suscepti-
ble to more obstacles on the way. Also, we may lose
some visible points due to the Earth’s curvature. For
20m towers, it looks like 3km away from the border
is the best distance. Still, it seems to be very im-
portant that we actually use the zone to improve our
performance rather than rely on increasing the tower
height. For 20m towers, the 23% improvement due
to the 5km zone is roughly equivalent to improve-
ment that could be gained by increasing the tower
height to 50m.

The distribution graph in figure 10 shows the el-

evation distribution of 3 categories: the outermost
ring corresponds to the entire border zone, the mid-
dle ring is the local maxima, and the inner ring
shows the actually placed towers. Local maxima are
distributed fairly evenly across the zone, as inferred
from the graph. In contrast, we can tell that the algo-
rithm preferred to place the towers on higher points.
Even though majority of the region is low elevation
(0 - 1000m), almost half of the towers are placed
at elevation 1000m or higher. We had few towers
placed in elevation 2km or higher relative to the re-
gion, but it is mostly because all the high elevation
points are clustered near the east end of the border,
and if we place a few towers in the elevated region
their visible field should be large, negating the ben-
efit of more towers in that region.

A major problem with our algorithm is its com-
putational complexity. Disregarding the complexity
of file I/O, it first takesO(n) time for locating the
maxima, wheren is the length of the border. Then
scanning the points on the border costsO(n3) time
(each border point× each candidate point× linear
viewshed computation, though we expect the linear
viewshed computation not to be as large asn). The
addition of critical towers to the permanent tower
list requires anotherO(n3) time, as we need to tra-
verse the table to find each point visible from the
critical tower. For each point found, we need to tra-
verse its row in the table again to “close” the point
and decrement the score of all other towers that can
see the point. Again, the last step usually is much
smaller thann, as we do not expect all towers to
be able to see the same border point. When plac-
ing 20m towers on top of the border, our running
time was around 90 seconds after extracting the bor-
der. As we increase the border zone, running time
increases, as is the case when we increase the tower
height. This happens due to the method of our view-
shed computation. Because we are doing linear line
of sight from a point to a point, as soon as we see
an obstacle high enough to block the target point on
the direct line, we can stop the computation. When
more towers tend to be visible from the border, the
number of computations required increases.

6 Conclusion

We have determined that the border of Arizona can
feasibly be patrolled by observation towers of rea-
sonable height and reasonable distance from the bor-
der. We expect that this algorithm could be success-
fully applied to any border. The execution time of
the algorithm for a large data set was not prohibitive,
and we conclude that the direct line of sight method
for determining visibility is sufficient for the border
patrol problem. Finally, we conclude that there are
diminishing returns in terms of visibility as tower
height and distance from the border are increased.
Given appropriate cost parameters, the most efficient
means of patrolling the border could be obtained
with our method.

7 Acknowledgements

We would like to heartily thank seamless.usgs.gov
for presenting us with the elevation data.

References

David Izraelevitz. 2003. A Fast Algorithm for Approx-
imate Viewshed Computation.American Society for
Photogrammetry and Remote Sensing, 69.7.

Andrew Vincent. 1999. Terrain Occlusion Using Binary
Adaptive Ray Casting.Silicon Graphics Inc.

