CS46, Swarthmore College, Spring 2018 Lab 9 (due Wednesday 2 May) Name: YOUR NAME(S) HERE

- 1. Suppose $A \leq_p B$ for all $A, B \in NP$. This implies amongst other things that if $A \leq_p B$ then $B \leq_p A$ for any $A, B \in NP$. Show that if the first statement is true then P = NP.
- 2. (Sipser 7.18) Show that if P = NP, then every language $A \in P$ is NP-complete except $A = \emptyset$ and $A = \Sigma^*$.
- 3. Give a polynomial time reduction from 3 COLOR to 3 SAT. You may want to use the variables V_{ij} to indicate that vertex V_i has color $j, 1 \leq j \leq 3$. If we know 3 SAT is NP-complete and 3 COLOR is in NP, what does this reduction tell us?
- 4. (Lewis & Papadimitriou 6.3.3)

$$2 - \text{SAT} = \begin{cases} \langle \varphi \rangle & | & \varphi \text{ is a satisfiable formula in conjunctive normal form} \\ & \text{with exactly two literals per clause} \end{cases}$$

We will prove that $2 - SAT \in P$.

Any clause $(x \lor y)$ with two literals can be thought of as two implications $\overline{x} \Rightarrow y$ and $\overline{y} \Rightarrow x$. The clause $(x \lor x)$ can be thought of as $\overline{x} \Rightarrow x$. If we then consider $x \Rightarrow y$ as a directed edge from vertex x to vertex y, we can construct an "implication graph" from any 2-CNF formula φ .

- (a) Show that a 2-CNF formula is unsatisfiable if and only if there is a variable x such that in the implication graph, there is a path from x to \overline{x} and from \overline{x} to x.
- (b) Design an algorithm based on this fact to show that $2 SAT \in P$.
- 5. Recall that a **vertex cover** in a graph G is a subset of vertices where every edge of G has at least one endpoint in the subset.

 $VERTEXCOVER = \{ \langle G, k \rangle \mid G \text{ has a } k \text{-node vertex cover} \}$

Theorem 7.44 says that VERTEXCOVER is NP-complete.

An **independent set** in a graph G is a subset of vertices with no edges between them.

INDEPENDENTSET = { $\langle G, k \rangle \mid G$ contains an independent set of k vertices }

We will show that INDEPENDENTSET is NP-complete.

- (a) Prove that INDEPENDENTSET \in NP.
- (b) Prove that INDEPENDENTSET is NP-hard. (Hint: reduce from VERTEXCOVER, though you can use any)