CS46, Swarthmore College, Spring 2018

Lab 2 (due Wednesday 7 February)

Name: YOUR NAME HERE

Part 1: Automata Tutor

There is nothing to write in the LATEX document for the first part of this assignment. Submit your solutions online. If you are using a late day for this part, you must hand write your solutions or typeset your solutions in LATEX and/or graphviz dot notation. Hand written late solutions must be delivered to my office before 8am Friday to count as one late day.

Part 2: Written homework

1. Write a concise English description of the language recognized by DFA M_1 .

Figure 1: DFA M_1

2. Write a concise English description of the language recognized by DFA M_2 .

Figure 2: DFA M_2

3. Write a concise English description of the language recognized by NFA M_3 .

Figure 3: NFA M_3

- 4. We have shown in class, or the book has shown that the set of regular languages are closed under union, intersection, concatenation, and star.
 - (a) Show via direct proof that the set of regular languages is closed under complement. Begin by assuming a language A is regular. Describe how to construct a machine that recognizes \overline{A} . Define all elements of your machine $M = (Q, \Sigma, \delta, q_0, F)$ and indicate if your constructed machine is a DFA or a NFA.
 - (b) Show that if A and B are regular then $A \setminus B = \{w | w \in A \text{ and } w \notin B\}$ is regular. To do this, define set subtraction $A \setminus B$ in terms of union, intersection, concatenation, star, and/or complement, and apply previous closure results. You do not need to provide a description of a machine.