1. The complexity class coNP consists of languages whose complement is in NP. It is currently an open question if $\text{coNP} = \text{NP}$. Show if $\text{NP} \neq \text{coNP}$ then $\text{P} \neq \text{NP}$.

2. Show that if $\text{P} = \text{NP}$ then any language $A \in \text{P}$ where $A \neq \emptyset$ and $A \neq \Sigma^*$ is NP-complete.

3. Give a reduction from 3-COLOR to 3-SAT. If we know 3-SAT is NP-complete, what do we know about 3-COLOR based on this reduction?

4. (L&P 6.3.3) Consider a Boolean formula in 2-CNF. Any clause $(x \lor y)$ can be thought of as two implications $\overline{x} \implies y$ and $\overline{y} \implies x$. The clause (x) can be thought of as $\overline{x} \implies x$. If we then consider $x \implies y$ as a directed edge from a vertex x to a vertex y, we can construct an implication graph from any 2-CNF formula. Show that a 2-CNF formula is unsatisfiable if and only if there is a variable x such that there is a path in the constructed graph from x to \overline{x} and a path from \overline{x} to x. Design an algorithm based on this observation to show $\text{2-SAT} \in \text{P}$.