CS46, Swarthmore College, Spring 2014 Homework 4 (due Thursday 20 February) Your Name(s) Here

No programming this week, only a written portion.

- 1. Sipser 1.48: Let $\Sigma = \{0, 1\}$ and let $L = \{w | w \text{ contains an equal number of occurrences of the substrings 01 and 10} \}$ Show that L is regular. Note $101 \in L$ but $1010 \notin L$.
- 2. Let $\Sigma = \{a, b\}.$
 - (a) Let $A = \{a^k u a^k | k \ge 1 \text{ and } u \in \Sigma^*$. Show that A is regular.
 - (b) Let $B = \{a^k b u a^k | k \ge 1 \text{ and } u \in \Sigma^*$. Show that B is not regular.
- 3. Binary addition is regular, but multiplication is not. Let our alphabet Σ be the set of all size 3 binary vectors:

$$\Sigma = \left\{ \begin{pmatrix} 0\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \dots, \begin{pmatrix} 1\\1\\1 \end{pmatrix} \right\}$$

A correct multiplication of two binary numbers can be represented by a string in Σ^* . For example:

would be represented by the following string of six symbols from Σ :

$$\left(\begin{array}{c}0\\0\\1\end{array}\right)\left(\begin{array}{c}0\\0\\1\end{array}\right)\left(\begin{array}{c}1\\0\\1\end{array}\right)\left(\begin{array}{c}1\\0\\0\end{array}\right)\left(\begin{array}{c}0\\1\\0\end{array}\right)\left(\begin{array}{c}1\\0\\1\end{array}\right)\left(\begin{array}{c}0\\1\\0\end{array}\right)$$

Let the language L be the set of all strings in Σ^* representing correct binary multiplications. Use the pumping lemma to show that L is not regular.

- 4. Construct context-free grammars that generate each of these languages:
 - (a) $\{wcw^R : w \in \{a, b\}^*\}$
 - (b) $\{ww^R : w \in \{a, b\}^*\}$
 - (c) $\{w \in \{a, b\}^* : w = w^R\}$
- 5. Recall the definition of regular expressions given on Sipser page 64. Give a formal description of a context-free grammar that generates the language

 $L = \{R : R \text{ is a regular expression for the alphabet } \{a, b\}\}$