
In lab exercises
Recall for parallel algorithms, the work law states TP ≥ T1/P while the span law states TP ≥ T∞.

A greedy scheduler can upper bound TP at TP ≤ T1−T∞
P + T∞.

1. For a fixed input size n, two parallel solutions are developed for a problem of moderate interest.
The first program has work T1 = 2048 and span T∞ = 1. The second program has work T1 = 1024
with span T∞ = 8. Assume the runtime for P processors is given by TP = T1/P + T∞.

(a) Suppose P ≤ 32 is small. Which program should we use?

(b) Suppose P ≥ 512 is large. Which program should we use?

(c) For what value of P are the run times roughly equal?

2. Suppose a set of experiments run on a greedy scheduler yield the following times: T4 = 80, T10 =
42, T64 = 10. Using the work and span laws, and the greedy scheduler runtime, argue that this
experiment seems flawed. You will need to first find upper bounds on T1 and T∞, and then use
these bounds to bound TP .

3. Develop a parallel solution for transposing a matrix which is free of race conditions. Evaluate
the work and span of your solution. The transpose A′ of a matrix A satisfies a′ij = aji for
1 ≤ i, j ≤ n.

4. Consider the following parallel algorithm for adding two arrays A and B into a third array C.

Algorithm 1 SUM-ARRAY(A, B, C):

n = len(A)
blockSize = ...
nblocks = dn/blockSsizee
for k = 0 to nblocks− 1:

spawn ADD-SUBARRAY(A,B,C, k · blockSize + 1,min((k + 1) · blockSize, n))
sync

Algorithm 2 ADD-SUBARRAY(A, B, C, i, j):

for k = i to j:
C[k] = A[k] + B[k]

(a) Analyze the parallelism when blockSize = 1.

(b) What is the optimal blockSize?

(c) What is the parallelism if we use parallel loops instead of this blocking strategy?


