In lab exercises

Recall for parallel algorithms, the work law states $T_P \ge T_1/P$ while the span law states $T_P \ge T_{\infty}$. A greedy scheduler can upper bound T_P at $T_P \le \frac{T_1 - T_{\infty}}{P} + T_{\infty}$.

- 1. For a fixed input size n, two parallel solutions are developed for a problem of moderate interest. The first program has work $T_1 = 2048$ and span $T_{\infty} = 1$. The second program has work $T_1 = 1024$ with span $T_{\infty} = 8$. Assume the runtime for P processors is given by $T_P = T_1/P + T_{\infty}$.
 - (a) Suppose $P \leq 32$ is small. Which program should we use?
 - (b) Suppose $P \ge 512$ is large. Which program should we use?
 - (c) For what value of P are the run times roughly equal?
- 2. Suppose a set of experiments run on a greedy scheduler yield the following times: $T_4 = 80, T_{10} = 42, T_{64} = 10$. Using the work and span laws, and the greedy scheduler runtime, argue that this experiment seems flawed. You will need to first find upper bounds on T_1 and T_{∞} , and then use these bounds to bound T_P .
- 3. Develop a parallel solution for transposing a matrix which is free of race conditions. Evaluate the work and span of your solution. The transpose A' of a matrix A satisfies $a'_{ij} = a_{ji}$ for $1 \le i, j \le n$.
- 4. Consider the following parallel algorithm for adding two arrays A and B into a third array C.

$\begin{array}{l} \textbf{Algorithm 1 SUM-ARRAY}(A, B, C): \\ \hline n = \operatorname{len}(A) \\ blockSize = \dots \\ nblocks = \lceil n/blockSsize \rceil \\ \text{for } k = 0 \text{ to } nblocks - 1: \\ \text{ spawn ADD-SUBARRAY}(A, B, C, k \cdot blockSize + 1, \min((k + 1) \cdot blockSize, n)) \\ \text{ sync} \end{array}$

Algorithm 2 ADD-SUBARRAY(A, B, C, i, j):

for k = i to j: C[k] = A[k] + B[k]

- (a) Analyze the parallelism when blockSize = 1.
- (b) What is the optimal *blockSize*?
- (c) What is the parallelism if we use parallel loops instead of this blocking strategy?