In lab exercises
Recall for parallel algorithms, the work law states $T_P \geq T_1/P$ while the span law states $T_P \geq T_\infty$. A greedy scheduler can upper bound T_P at $T_P \leq T_1/P + T_\infty$.

1. For a fixed input size n, two parallel solutions are developed for a problem of moderate interest. The first program has work $T_1 = 2048$ and span $T_\infty = 1$. The second program has work $T_1 = 1024$ with span $T_\infty = 8$. Assume the runtime for P processors is given by $T_P = T_1/P + T_\infty$.

(a) Suppose $P \leq 32$ is small. Which program should we use?
(b) Suppose $P \geq 512$ is large. Which program should we use?
(c) For what value of P are the run times roughly equal?

2. Suppose a set of experiments run on a greedy scheduler yield the following times: $T_4 = 80$, $T_{10} = 42$, $T_{64} = 10$. Using the work and span laws, and the greedy scheduler runtime, argue that this experiment seems flawed. You will need to first find upper bounds on T_1 and T_∞, and then use these bounds to bound T_P.

3. Develop a parallel solution for transposing a matrix which is free of race conditions. Evaluate the work and span of your solution. The transpose A' of a matrix A satisfies $a'_{ij} = a_{ji}$ for $1 \leq i, j \leq n$.

4. Consider the following parallel algorithm for adding two arrays A and B into a third array C.

Algorithm 1 SUM-ARRAY(A, B, C):

$n = \text{len}(A)$

$blockSize = \ldots$

$nb\text{locks} = \lceil n/blockSize \rceil$

for $k = 0$ to $nb\text{locks} - 1$:

spawn ADD-SUBARRAY(A, B, C, $k \cdot blockSize + 1$, $\min((k + 1) \cdot blockSize, n)$)

sync

Algorithm 2 ADD-SUBARRAY(A, B, C, i, j):

for $k = i$ to j:

$C[k] = A[k] + B[k]$

(a) Analyze the parallelism when $blockSize = 1$.
(b) What is the optimal $blockSize$?
(c) What is the parallelism if we use parallel loops instead of this blocking strategy?