In lab exercises

1. Selection sort on a array of \(n \) items can be described recursively as follows: find the smallest element of the array, move it to the front, selection sort the rest of the array. Write a recurrence equation that describes the run time of selection sort and then solve the recurrence.

2. Solve

\[
T(n) = \begin{cases}
2T(\frac{n}{2}) + c_1 n^2 & \text{if } n > 1 \\
0 & \text{if } n = 1
\end{cases}
\]

3. Solve

\[
T(n) = \begin{cases}
2T(n-1) + n & \text{if } n > 1 \\
0 & \text{if } n = 1
\end{cases}
\]

4. Solve

\[
T(n) = \begin{cases}
T(n-1) + T(n-2) + 1 & \text{if } n > 2 \\
0 & \text{otherwise}
\end{cases}
\]

5. Solve

\[
T(n) = \begin{cases}
2T(\frac{n}{2}) + c_1 & \text{if } n > 4 \\
0 & \text{otherwise}
\end{cases}
\]

6. Solve

\[
T(n) = \begin{cases}
2T(\sqrt{n}) + \lg n & \text{if } n > 2 \\
0 & \text{otherwise}
\end{cases}
\]

This one is a bit evil. Start by letting \(m = \lg n \). Rewrite the recurrence in terms of \(m \). Now let \(S(m) = T(2^m) \) and rewrite the recurrence in terms of \(S(m) \). This recurrence should look familiar, solve it. Finally express your answer in terms of \(T \) and \(n \).

7. Liars and Friars

For fall break, you escape to a tropical island to get away from Philly weather and Algorithms class. The island is populated by \(n \) inhabitants, where each inhabitant is either a liar or a friar. A friar always tells the truth, but liars cannot be trusted. You want to find the best place to eat for dinner and you certainly don’t want to ask a liar (they will recommend bagel bar at Sharples, or some hipster coffee shop), so you would like to identify at least one friar. To help find a friar, you can pair up any two inhabitants \(A \) and \(B \) and ask each to identify the other. Each answers that the other is either a liar or a friar. If either \(A \) or \(B \) answers that the other is a liar, at least one of \(A \) and \(B \) is a liar. If both claim that the other is a friar, \(A \) and \(B \) are either both friars or both liars.

(a) Show if more than \(n/2 \) inhabitants are liars, you may not be able to identify a friar using this pairwise strategy. You may assume the liars can collude to convince you they are liars.

(b) Now assume that more than \(n/2 \) inhabitants are friars. Show that \(\lfloor n/2 \rfloor \) pairwise comparisons can reduce the problem of finding a single friar to a problem of nearly half the size. Describe how to find a single friar using this approach.

(c) Show how to find all friars, assuming there are more than \(n/2 \) using no more than \(O(n) \) pairwise comparisons. Give a recurrence which counts the number of comparisons and give a solution to this recurrence.