Homework 7. You may work with one partner on this assignment. Writeups are due Thursday 6 December.

- 1. For each of the questions below answer "yes", "no", or "unknown, because it would result in deciding if P=NP. If the answer is "no" or "unknown", give a brief explanation. If the answer is "yes", give a reduction.
  - (a) Let DIS be the following problem: Given a collection of intervals (a, b), a < b on a time-line, and a bound k, does the collection contain a subset of at least k non-overlapping intervals? This is a decision problem version of the Interval Scheduling problem we discussed in the greedy algorithms chapter. Question: Is DIS  $\leq_P$  Vertex Cover?
  - (b) Is Independent Set  $\leq_P$  DIS?
- 2. Read the definition of the Set Packing problem on page 458. Show Independent Set  $\leq_P$  Set Packing.
- 3. The 2-Color problem asks if each vertex in a graph G = (V, E) can be colored with on of two colors; red or blue such that for every edge has end points of opposite colors.
  - (a) Give an example of a graph that can be 2-Colored
  - (b) Given an example of a graph that cannot be 2-Colored
  - (c) Give a example certificate to show 2-Color is in NP
  - (d) Give an algorithm to show 2-Color is in P: Hint the Oracle of Bacon graph from cs35 can be two colored if edges connect movie/actor pairs and movies are assigned one color and actors/actresses are assigned the other color.
  - (e) 2-SAT is a version of SATISFIABILITY in which each clause has exactly two terms. Let the Boolean term  $v_{ir}$  have the value 1 if  $v_i \in G$  is colored red, and let the Boolean term  $v_{ib}$ have the value 1 if  $v_i \in G$  is blue. Give a reduction 2-Color  $\leq_P$  2-SAT. Hint: write 2-SAT clauses that show the following
    - i. Each vertex  $v_i \in G$  has at least one color; red or blue
    - ii. Each vertex has at most one color
    - iii. For each edge  $(v_i, v_j) \in E$ ,  $v_i$  and  $v_j$  have different colors.

Remember to show a graph G is 2-Colorable iff your 2-SAT formula is satisfiable.

(f) We know 2-Color is in P. What does this imply about 2-SAT?