
The Artificial Life of Plants

Przemyslaw Prusinkiewicz, Mark Hammel, Radomı́r
Měch

Department of Computer Science
University of Calgary

Calgary, Alberta, Canada T2N 1N4
e-mail: pwpjhammeljmech@cpsc.ucalgary.ca

Jim Hanan
CSIRO - Cooperative Research Centre

for Tropical Pest Management
Brisbane, Australia

e-mail: jim@ctpm.uq.oz.au

FromArtificial life for graphics, animation, and virtual reality,
volume 7 of SIGGRAPH ’95 Course Notes, pages 1-1–1-38. ACM

Press, 1995.

The Artificial Life of Plants

Przemyslaw Prusinkiewicz, Mark Hammel, Radomı́r Měch
Department of Computer Science

University of Calgary
Calgary, Alberta, Canada T2N 1N4

e-mail: pwpjhammeljmech@cpsc.ucalgary.ca

Jim Hanan
CSIRO - Cooperative Research Centre for Tropical Pest Management

Brisbane, Australia
e-mail: jim@ctpm.uq.oz.au

August 23, 1995

Abstract

In these notes we survey applications of L-systems to the modeling of plants, with an
emphasis on the results obtained since the comprehensive presentation of this area inThe
Algorithmic Beauty of Plants[61]. The new developments include:

� a better understanding of theoretical issues pertinent to graphical applications of L-
systems,

� extensions to programming techniques based on L-systems, and

� an extension of the range of phenomena expressible using L-systems.

Keywords: L-system, fractal, plant, modeling, simulation, realistic image synthesis, emer-
gence, artificial life.

1 Introduction

In 1968, Aristid Lindenmayer introduced a formalism for simulating the development of multicel-
lular organisms, subsequently named L-systems [36]. This formalism was closely related to ab-
stract automata and formal languages, and attracted the immediate interest of theoretical computer
scientists [67]. The vigorous development of the mathematical theory of L-systems [70, 27, 66]
was followed by the application of the theory to the modeling of plants [18, 17, 16, 31, 42, 56, 61].
In the present notes we survey recent results, current work, and open problems pertinent to this
latter domain. In this context, we emphasize the phenomenon ofdata base amplification[71], that

1

parent children

production

occurrence
mapping

production
application

p

ϕ ϕ−1 ϕ

predecessor successor

Figure 1: Illustration of the concept of rewriting applied to modules with geometric interpretation.
A parent module is replaced by child modules in a sequence of transformations'�1p'.

is the possibility of generating complex structures from small data sets, and the related notion of
emergence. According to Taylor [74, page 31], emergence is a process in which a collection of
interacting units acquires qualitatively new properties that cannot be reduced to a simple superpo-
sition of individual contributions. Studies of emergence are amongst the central themes ofartificial
life (Problem 1.1, see Section 11).

2 The modular structure of plants

L-systems were originally introduced to model the development of simplemulticellularorganisms
(for example, algae) in terms of division, growth, and death of individual cells [36, 37]. The range
of L-system applications has subsequently been extended to higher plants and complex branching
structures, in particular inflorescences [18, 19], described as configurations of modules in space
(Problem 2.1). In the context of L-systems, the termmoduledenotes any discrete constructional
unit that is repeated as the plant develops, for example an internode, an apex, a flower, or a branch
(c.f. [4, page 284]) (Problem 2.2). The goal of modeling at the modular level is to describe the
development of a plant as a whole, and in particular the emergence of plant shape, as the integration
of the development of individual units (Problem 2.3).

3 Plant development as a rewriting process

The essence of development at the modular level can be conveniently captured by a parallelrewrit-
ing systemthat replaces individualparent, mother, or ancestormodules by configurations ofchild,
daughter, or descendantmodules. All modules belong to a finitealphabet of module types, thus
the behavior of an arbitrarily large configuration of modules can be specified using a finite set of
rewriting rulesor productions. In the simplest case ofcontext-freerewriting, a production consists
of a single module called thepredecessoror theleft-hand side, and a configuration of zero, one,

2

bud flower young fruit old fruit

a)

b)

c)

Figure 2: Examples of production specification and application: (a) development of a flower, (b)
development of a branch, and (c) cell division.

or more modules called thesuccessoror theright-hand side. A productionp with the predeces-
sor matching a given mother module can be applied by deleting this module from the rewritten
structure and inserting the daughter modules specified by the production’s successor. This process
requires finding anoccurrence map' that transforms the predecessor into the mother module,
and applying the same transformation to all the modules in the successor in order to produce the
appropriate child modules (Figure 1).

Three examples of production application are shown in Figure 2. In case (a), modules located
at the extremities of a branching structure are replaced without affecting the remainder of the
structure. In case (b), productions that replace internodes divide the branching structure into a
lower part (below the internode) and an upper part. The position of the upper part is adjusted to
accommodate the insertion of the successor modules, but the shape and size of both the lower and
upper part are not changed. Finally, in case (c), the rewritten structures are represented by graphs
with cycles. The size and shape of the production successor does not exactly match the size and

3

Figure 3: Developmental model of a compound leaf, modeled as a configuration of apices and
internodes.

shape of the predecessor, and the geometry of the predecessor and the embedding structure had to
be adjusted to accommodate the successor. The last case is most complex, since the application
of a local rewriting rule may lead to a global change of the structure’s geometry. Developmental
models of cellular layers operating in this manner have been presented in [11, 12, 15, 61]. In
these notes we focus on the rewriting of branching structures corresponding to cases (a) and (b).
(Problem 3.1).

Productions may be appliedsequentially, to one module at a time, or they may be applied
in parallel, with all modules being rewritten simultaneously in everyderivation step. Parallel
rewriting is more appropriate for the modeling of biological development, since development takes
place simultaneously in all parts of an organism. A derivation step then corresponds to the progress
of time over some interval. A sequence of structures obtained in consecutive derivation steps from
a predefinedinitial structureor axiomis called adevelopmental sequence. It can be viewed as the
result of adiscrete-time simulationof development (Problem 3.2).

For example, Figure 3 illustrates the development of a stylized compound leaf including two
module types, theapices(represented by thin lines) and theinternodes(thick lines). An apex
yields a structure that consists of two internodes, two lateral apices, and a replica of the main apex.
An internode elongates by a constant scaling factor. In spite of the simplicity of these rules, an
intricate branching structure develops from a single apex over a number of derivation steps. The
fractal geometry of this structure can be viewed as an emergent property of the rewriting rules.

At first sight, Figure 3 resembles fractal generation using a Koch construction. We will see,
however, that there are important differences between these two processes.

Mandelbrot [48, page 39] characterized Koch constructions as follows:

One begins withtwo shapes, an initiator and agenerator. The latter is an oriented
broken line made up ofN equal sides of lengthr. Thus each stage of the construction
begins with a broken line and consists in replacing each straight interval with a copy
of the generator, reduced and displaced so as to have the same end points as those of
the interval being replaced.

4

a b

Figure 4: A comparison of the Koch construction (a) with a rewriting system preserving the branch-
ing topology of the modeled structures (b). The same production is applied in both cases, but the
rules for incorporating the successor into the structure are different.

Mandelbrot introduced many extensions of this basic concept, including generators with lines of
unequal length (pages 56–57) and with a branching topology (pages 71–73) (Problem 3.3). All
these variants share one fundamental characteristic, namely that the position, orientation, and scale
of the interval being replaced determine the position, orientation, and scale of the replacement (a
copy of the generator). In models of plants, however, the position and orientation of each module
should be determined by the chain of modules beginning at the base of the structure and extending
to the module under consideration. For example, when the internodes of a plant elongate (as is the
case in Figure 3), all the subtended branches are moved upwards in response. Similarly, when the
internodes bend, the subtended branches are rotated and displaced (Figure 4b). A Koch construc-
tion cannot capture these phenomena, because it operates under the assumption that the parent
modules determine all aspects of their descendants (Figure 4a). In contrast, in a developmental
model of a branching structure the position and orientation of the descendants are determined by
the subtending modules. The difference between these two cases is illustrated in Figure 5.

The information flow taking place during the development of a branching structure can be
expressed directly in the geometric domain, using a proper modification of the Koch construction
(Problem 3.4). A different approach was proposed by Lindenmayer [36, 37] and is essential to
the resulting theory of L-systems. The generated structures and the rewriting rules are expressed
symbolically using a string notation. Thegeometric interpretationof these strings automatically
captures proper positioning of the higher branches on the lower ones.

The basic notions of the theory of L-systems have been presented in many survey papers [39,
40, 41, 43, 44, 45] and books [27, 56, 61, 66, 70]. Consequently, we only describe parametric
L-systems, which are a convenient programming tool for expressing models of plant development.

5

developmental
sequence:

base apex

production:

Figure 5: Information flow in a Koch construction and in a developing modular structure. In the
Koch construction, information flows only from the parent modules to their descendants (continu-
ous line). In the developmental model, positional information flows along the paths from the root
to the apices of the branches (dashed line).

4 Parametric L-systems

Parametric L-systems extend the basic concept of L-systems by assigning numerical attributes
to the L-system symbols. This extension was implemented as early as the 1970’s in the first
simulator based on L-systems, called CELIA (and acronym for CEllular Linear Iterative Array
simulator) [3, 26, 27, 38], as a programming rather than theoretical construct. Our presentation
closely follows the formalization introduced in [57, 61] (see also [25, 58]) (Problems 4.1, 4.2).

Parametric L-systems operate onparametric words, which are strings ofmodulesconsisting of
letterswith associatedparameters. The letters belong to analphabetV , and the parameters belong
to the set ofreal numbers<. A module with letterA 2 V and parametersa1; a2; :::; an 2 < is
denoted byA(a1; a2; :::; an). Every module belongs to the setM = V � <�, where<� is the set
of all finite sequences of parameters. The set of all strings of modules and the set of all nonempty
strings are denoted byM� = (V � <�)� andM+ = (V �<�)+, respectively.

The real-valuedactualparameters appearing in the words correspond withformal parameters
used in the specification of L-system productions. If� is a set of formal parameters, thenC(�)
denotes alogical expressionwith parameters from�, andE(�) is anarithmetic expressionwith
parameters from the same set. Both types of expressions consist of formal parameters and numeric
constants, combined using the arithmetic operators+, �, �, =; the exponentiation operator̂, the
relational operators<, <=, >, >=, ==; the logical operators!, &&, jj (not, and, or); and paren-
theses(). The operation symbols and the rules for constructing syntactically correct expressions
are the same as in the C programming language [32]. Relational and logical expressions evaluate
to zero for false and one for true. A logical statement specified as the empty string is assumed
to have value one. The sets of all correctly constructed logical and arithmetic expressions with
parameters from� are notedC(�) andE(�).

6

A parametric OL-systemis defined as an ordered quadrupleG = hV;�; !; P i, where

� V is thealphabetof the system,

� � is theset of formal parameters,

� ! 2 (V �<�)+ is a nonempty parametric word called theaxiom,

� P � (V � ��)� C(�)� (V � E(�))� is a finiteset of productions.

The symbols: and! are used to separate the three components of a production: thepredecessor,
theconditionand thesuccessor. For example, a production with predecessorA(t), conditiont > 5
and successorB(t + 1)CD(t ^ 0:5; t� 2) is written as

A(t) : t > 5 ! B(t+ 1)CD(t ^ 0:5; t� 2): (1)

A productionmatchesa module in a parametric word if the following conditions are met:

� the letter in the module and the letter in the production predecessor are the same,

� the number of actual parameters in the module is equal to the number of formal parameters
in the production predecessor, and

� the condition evaluates totrue if the actual parameter values are substituted for the formal
parameters in the production.

A matching production can beapplied to the module, creating a string of modules specified by
the production successor. The actual parameter values are substituted for the formal parameters
according to their position. For example, production (1) above matches a moduleA(9), since the
letterA in the module is the same as in the production predecessor, there is one actual parameter
in the moduleA(9) and one formal parameter in the predecessorA(t), and the logical expression
t > 5 is true fort equal to9. The result of the application of this production is a parametric word
B(10)CD(3; 7).

If a modulea produces a parametric word� as the result of a production application in an
L-systemG, we writea 7! �. Given a parametric word� = a1a2:::am, we say that the word� =
�1�2:::�m is directly derivedfrom (or generatedby) � and write� =) � if and only if ai 7! �i
for all i = 1; 2; :::; m. A parametric word� is generated byG in a derivation of lengthn if there
exists a sequence of words�0; �1; :::; �n such that�0 = !, �n = � and�0 =) �1 =) ::: =) �n.

An example of a parametric L-system is given below.

! : B(2)A(4; 4)
p1 : A(x; y) : y <= 3 ! A(x � 2; x+ y)
p2 : A(x; y) : y > 3 ! B(x)A(x=y; 0)
p3 : B(x) : x < 1 ! C

p4 : B(x) : x >= 1 ! B(x� 1)

(2)

It is assumed that a module replaces itself if no matching production is found in the setP . The
words obtained in the first few derivation steps are shown in Figure 6.

7

µ0: B(2) A(4,4)

µ2: B(0) B(3) A(2,1)

µ3: C B(2) A(4,3)

µ4: C B(1) A(1.33,7)

µ1: B(1) B(4) A(1,0)

Figure 6: The initial sequence of strings generated by the parametric L-system specified in equa-
tion (2)

Productions in parametric OL-systems are context-free,i.e.,applicable regardless of the context
in which the predecessor appears. A context-sensitive extension is necessary to model information
exchange between neighboring modules. In the parametric case, each component of the production
predecessor (theleft context, thestrict predecessorand theright context) is a parametric word with
letters from the alphabetV and formal parameters from the set�. Any formal parameters may
appear in the condition and the production successor.

A sample context-sensitive production is given below:

A(x) < B(y) > C(z) : x+ y + z > 10! E((x + y)=2)F ((y + z)=2): (3)

The left context is separated from the strict predecessor by the symbol<. Similarly, the strict
predecessor is separated from the right context by the symbol>. Production 3 can be applied to
the moduleB(5) that appears in a parametric word

� � �A(4)B(5)C(6) � � � (4)

since the sequence of lettersA;B;C in the production and in parametric word (4) are the same,
the numbers of formal parameters and actual parameters coincide, and the condition4 + 5 +
6 > 10 is true. As a result of the production application, the moduleB(5) will be replaced by a
pair of modulesE(4:5)F (5:5). Naturally, the modulesA(4) andC(6) will be replaced by other
productions in the same derivation step.

Productions in 2L-systems use context on both sides of the strict predecessor. 1L-systems are
a special case of 2L-systems in which context appears only on one side of the productions.

When no production explicitly listed as a member of the production setP matches a module in
the rewritten string, we assume that an appropriateidentity productionbelongs toP and replaces
this module by itself. Under this assumption, a parametric L-systemG = hV;�; !; P i is called
deterministicif and only if for each moduleA(t1; t2; : : : ; tn) 2 V �<� the production set includes
exactly one matching production.

If more than one production inP matches a module, an additional mechanism is needed to
select which production should be applied to this module. InstochasticL-systems, this decision is
based on random factors. In the most extensive case, a production has the format:

id : lc < pred > rc : cond! succ : �

8

whereid is the production identifier (label),lc, pred, andrc are the left context, the strict prede-
cessor, and the right context,cond is the condition,succ is the successor, and� is an arithmetic
expression returning a non-negative number called theprobability factor. If P̂ � P is the set of
productions matching a given moduleA(t1; t2; : : : ; tn) 2 V � <� in the rewritten string, then the
probabilityprob(pk) of applying a particular productionpk 2 P̂ to this module is equal to:

prob(pk) =
�(pk)P
pi2P̂

�(pi)

In general, this probability is not a constant associated with a production, but may depend on the
parameter values in the rewritten module and its context.

An example of a context-sensitive stochastic parametric L-system is given below.

! : A(1)B(3)A(5)
p1 : A(x) ! A(x + 1) : 2
p2 : A(x) ! B(x� 1) : 3
p3 : A(x) : x > 3 ! C(x) : x
p4 : A(x) < B(y) > A(z) : y < 4 ! B(x + z)A(y)

The productionsp1, p2, andp3 replace moduleA(x) byA(x+1),B(x�1), orC(x). If the value of
parameterx is less then or equal to 3, only the first two productions matchA(x). The probabilities
of applying each production are:prob(p1) = 2=(2 + 3) = 0:4, andprob(p2) = 3=(2 + 3) = 0:6.
If parameterx is greater then 3, productionp3 also matches the moduleA(x), and the probability
of applying each production depends on the value ofx. For example, ifx is equal to 5, these
probabilities are:prob(p1) = 2=(2 + 3 + 5) = 0:2, prob(p2) = 3=(2 + 3 + 5) = 0:3, and
prob(p3) = 5=(2+3+5) = 0:5. The context-sensitive productionp4 replaces a moduleB(y) with
left contextA(x) and right contextA(z) by the pair of modulesB(x + z)A(y). The application
of this production is guarded by conditiony < 4. Taking all these factors into account, the first
derivation step may have the form:

A(1)B(3)A(5) =) A(2)B(6)A(3)C(5)

It was assumed that, as a result of random choice, productionp1 was applied to the moduleA(1),
and productionp3 to the moduleA(5). Productionp4 was applied to the moduleB(3), because it
occurred with the required left and right context, and the condition3 < 4 was true.

5 The turtle interpretation of L-systems

Strings generated by L-systems may be interpreted geometrically in many different ways [57, 61].
Below we outline theturtle interpretationof parametric L-systems, introduced by Szilard and
Quinton [73], and extended by Prusinkiewicz [51, 52] and Hanan [24, 25]. A tutorial exposition
is included in [61], and subsequent results are presented in [25]. The summary below is based
on [30, 52] and [61].

After a string has been generated by an L-system, it is scanned sequentially from left to right,
and the consecutive symbols are interpreted as commands that maneuver a LOGO-style turtle [1,

9

H\
→

/
L

−+

U
→

→

^

&

Figure 7: Controlling the turtle in three dimensions

50] in three dimensions. The turtle is represented by itsstate, which consists of turtlepositionand
orientationin the Cartesian coordinate system, as well as various attribute values, such as current
color andline width. The position is defined by a vector~P , and the orientation is defined by three
vectors~H, ~L, and~U, indicating the turtle’sheadingand the directions to theleft andup (Figure 7).
These vectors have unit length, are perpendicular to each other, and satisfy the equation~H�~L = ~U.
Rotations of the turtle are expressed by the equation:

h
~H 0 ~L0 ~U 0

i
=
h
~H ~L ~U

i
R;

whereR is a3� 3 rotation matrix [14]. Specifically, rotations by angle� about vectors~U , ~L and
~H are represented by the matrices:

RU(�) =

2
64

cos� sin� 0
� sin� cos� 0

0 0 1

3
75 ;

RL(�) =

2
64
cos� 0 � sin�
0 1 0

sin� 0 cos�

3
75 ;

RH(�) =

2
64
1 0 0
0 cos� � sin�
0 sin� cos�

3
75 :

Changes in the turtle’s state are caused by interpretation of specific symbols, each of which may
be followed by parameters. If one or more parameters are present, the value of the first parameter
affects the turtle’s state. If the symbol is not followed by any parameter, default values specified
outside the L-system are used. The following list specifies the basic set of symbols interpreted by
the turtle.

Symbols that cause the turtle to move and draw

F (s) Move forward a step of lengths and draw a line segment from the original to the new
position of the turtle.

10

f(s) Move forward a step of lengths without drawing a line.

@O(r) Draw a sphere of radiusr at the current position.

Symbols that control turtle orientation in space (Figure 7)

+(�) Turn left by angle� around the~U axis. The rotation matrix isRU(�).

�(�) Turn right by angle� around the~U axis. The rotation matrix isRU(��).

&(�) Pitch down by angle� around the~L axis. The rotation matrix isRL(�).

^(�) Pitch up by angle� around the~L axis. The rotation matrix isRL(��).

=(�) Roll left by angle� around the~H axis. The rotation matrix isRH(�).

n(�) Roll right by angle� around the~H axis. The rotation matrix isRH(��).

j Turn180� around the~U axis. This is equivalent to+(180) or�(180).

Symbols for modeling structures with branches

[Push the current state of the turtle (position, orientation and drawing attributes) onto a
pushdown stack.

] Pop a state from the stack and make it the current state of the turtle. No line is drawn,
although in general the position and orientation of the turtle are changed.

Symbols for creating and incorporating surfaces

f Start saving the subsequent positions of the turtle as the vertices of a polygon to be filled.

g Fill the saved polygon.

� Draw the surface identified by the symbol immediately following the� at the turtle’s
current location and orientation.

@PS(i; basis) Begin definition of bicubic surfacei by initializing its 16 control points to(0; 0; 0).
The optional parameterbasis specifies the type of patch as:

1. Bézier,

2. B-spline,

3. Cardinal spline.

If no basis is given, use B´ezier surface as the default.

@PC(i; r; c) Assign the current position of the turtle to the control point of surfacei in row r and
columnc.

@PD(i; s; t) Draw surfacei by subdividing it intos quadrangles along the rows andt along the
columns.

11

�!

Figure 8: The productionF (s) ! F (s=3) + (60)F (s=3)� (120)F (s=3) + (60)F (s=3)

Symbols that change the drawing attributes

#(w) Set line width tow, or increase the value of the current line width by the default width
increment if no parameter is given.

!(w) Set line width tow, or decrease the value of the current line width by the default width
decrement if no parameter is given.

; (n) Set the index of the color map ton, or increase the value of the current index by the default
colour increment if no parameter is given.

; (n) Set the index of the color map ton, or decrease the value of the current index by the
default colour decrement if no parameter is given.

6 Examples of L-systems

This section presents selected examples that illustrate the operation of L-systems with turtle inter-
pretation. The material is based on [30, 59], and [61].

Fractal curves are useful in explaining the operation of L-systems that do not include branches.
The following L-system generates the Koch snowflake curve.

! : F (1)� (120)F (1)� (120)F (1)
p1 : F (s)! F (s=3) + (60)F (s=3)� (120)F (s=3) + (60)F (s=3)

The axiomF (1)� (120)F (1)� (120)F (1) draws an equilateral triangle, with the edges of unit
length. Productionp1 replaces each line segment with the polygonal shape shown in Figure 8. The
productions for the+ and� symbols are not listed, which means that the corresponding modules
will be replaced by themselves during the derivation. The same effect could have been obtained by
explicit inclusion of productions:

p2 : +(a) ! +(a)
p3 : �(a) ! �(a)

The axiom and the first three derivation steps are illustrated in Figure 9.
The next L-system generates the developmental sequence of the compound leaf model pre-

sented in Figure 3.

! : !(3)F (1; 1)
p1 : F (s; t) : t == 1 ! F (s; 2)[�!(1)F (s; 1)][+!(1)F (s; 1)]F (s; 2)!(1)F (s; 1)
p2 : F (s; t) : t == 2 ! F (2 � s; 2)
p3 : !(w) : w < 2 ! !(3)

12

n = 0 n = 1 n = 2 n = 3

Figure 9: The snowflake curve aftern = 0, 1, 2, and 3 derivation steps

The axiom and productionsp1 andp2 include modulesF with two parameters. The first pa-
rameter specifies the length of the line representing the module. The second parameter determines
whether the module is an apex (t == 1) or an internode (t == 2). The graphical interpretation
of both productions is shown in Figure 3. The branching angle associated with symbols+ and�
is set to45� by a global variable outside the L-system. Productionp3 is used to make the lines
representing the internodes wider than the lines representing the apices.

The following example illustrates the application of a stochastic L-system to the generation
of a three-dimensional tree. The model is based on the analysis of tree growth by Borchert and
Slade [7].

! : FA(1)
p1 : A(k) ! =(�)[+(�)FA(k + 1)]� (�)FA(k + 1) : minf1; (2k + 1)=k2g
p2 : A(k) ! =(�)B � (�)FA(k + 1) : maxf0; 1� (2k + 1)=k2g

The generation of the tree begins with a single internodeF terminated by apexA(1). The
parameter of the apex (k) acts as a counter of derivation steps. Productionp1 describes the creation
of two new branches, whereas productionp2 describes the production of a branch segment and a
dormant budB. Probabilities of these events are equal toprob(p1) = minf1; (2k + 1)=k2g and
prob(p2) = 1� prob(p1), respectively, thus the probability of branching (captured by production
p1) gradually decreases as the tree grows older. A detailed justification of these formulas is given
in [7, 59]. Figure 10 shows side views of three sample trees after 18 derivation steps. The branching
angles, equal to� = 90�; � = 32�, and� = 20�, yield a sympodial branching structure (new shoots
do not continue the growth direction of the preceding segments). This structure is representative to
the Leeuwenberg’s model of tree architecture identified by Hall´e et al. [23], although no attempt
to capture a particular tree species was made.

The final example of this section illustrates the inclusion of predefined surfaces into a model.
The following L-system generates the stylized flower shown in Figure 11.

! : =(154)B
p1 : B ! [&(72)#F (5)!P]
p2 : P ! [S=(72)S=(72)S=(72)S=(72)S]
p3 : S ! [^(103) � s][^(72) � p][^(34)F (1)#[�F (1)][+F (1)]]

Productionp1 creates the stalkF (5) and the symbolP , which gives rise to theperianth. Production
p2 describes the perianth as consisting of five sectorsS, rotated with respect to each other by72�.

13

Figure 10: Sample tree structures generated using a stochastic L-system

Figure 11: A stylized flower

14

Figure 12: Simulated development of a bluebell flower

According to productionp3, each sector consists of thesepalrepresented by a predefined surfaces,
the petal represented by a predefined surfacep, and a configuration of line segments representing
ananther. The exact shape of the sepals and petals is defined outside the L-system. This L-system
does not simulate the process of flower development, but uses productions to capture the flower’s
structure in a compact, hierarchical manner.

7 Life, death, and reproduction

The L-systems considered so far werepropagating. Each module, once created, continued to
exist indefinitely or gave rise to one or more children, but never disappeared without a trace. The
natural processes of plant development, however, often involve the programmed death of selected
modules and their removal from the resulting structures. We consider these phenomena in the
present section.

The original approach to simulating module death was to usenon-propagatingL-systems,
which incorporateerasingproductions [27]. In the context-free case these productions have the
formA �! ", where" denotes the empty string. Intuitively, the moduleA is replaced by “nothing”
and is removed from the structure. Erasing productions can faithfully simulate the disappearance
of individual modules placed at the extremities of the branching structure (that is, not followed
by other modules). For example, in the developmental sequence shown in Figure 12 (described in
detail in [55]), erasing productions have been used to model the fall of petals.

The modeling task becomes more difficult when an entire structure, such as a branch, is shed

15

Figure 13: A developmental sequence generated by the L-system specified in Equation 5. The
images shown represent derivation steps 2 through 9.

by the plant. A plant can control this process byabscission, that is the development of a pithy
layer of cells that weakens the stem of a branch at its base. Obviously, abscission is represented
more faithfully by cutting a branch off than by simultaneously erasing all of its modules. In order
to simulate shedding, Hanan [25] extended the formalism of L-systems with the “cut symbol”
%, which causes the removal of the remainder of the branch that follows it. For example, in the
absence of other productions, the derivation step given below takes place:

a[b%[cd]e[%f]]g[h[%i]j]k =) a[b]g[h[]j]k

It is interesting to consider the operation of the cut symbol in the context of Figure 5 from Section 3.
Information about the occurrence of a cut symbol does not flow from the parent module or its
immediate neighbors to their children, but propagates from the cutting point to the extremities of
the branches in the same manner positional information does (Problem 7.1).

A simple example of an L-system incorporating the cut symbol is given below:

! : A

p1 : A ! F (1)[�X(3)B][+X(3)B]A
p2 : B ! F (1)B
p3 : X(d) : d > 0 ! X(d� 1)
p4 : X(d) : d == 0 ! U%
p5 : U ! F (0:3)

(5)

According to productionp1, in each derivation step the apex of the main axisA produces an
internodeF of unit length and a pair of lateral apicesB. Each apexB extends a branch by forming
a succession of internodesF (productionp2). After three steps from branch initiation (controlled
by productionp3), productionp4 inserts the cut symbol% and an auxiliary symbolU at the base of
the branch. In the next step, the cut symbol removes the branch, while symbolU inserts a marker
F (0:3) indicating a “scar” left by the removed branch. The resulting developmental sequence is
shown in Figure 13. The initial steps capture the growth of abasipetalstructure (developed most
extensively at the base). Beginning at derivation step 6, the oldest branches are shed, creating an
impression of a tree crown of constant shape and size moving upwards. The crown is in a state of
dynamic equilibrium: the addition of new branches and internodes at the apices is compensated by
the loss of branches further down (Problem 7.2).

16

Figure 14: A model of the date palm (Phoenix dactylifera). This image was created using an
L-system with the general structure specified in Equation 5.

17

Figure 15: Development of the rhizomatous system ofAlpinia speciosa. The images show consec-
utive stages of simulation generated in 6 to 13 derivation steps. Line width indicates the age of the
rhizome segments. Each segment dies and disappears seven steps after its creation.

The state of dynamic equilibrium can be easily observed in the development of palms, where
new leaves are created at the apex of the trunk while old leaves are shed at the base of the crown
(Figure 14). Both processes take place at the same rate, thus an adult palm carries an approximately
constant number of leaves. This phenomenon has an interesting physiological explanation: palms
are unable to gradually increase the diameter of their trunk over time, thus the flow of substances
through the trunk can support only a crown of a constant size.

In the case of falling leaves and branches, the parts separated from the main structure die.
Separation of modules can also lead to the reproduction of plants. This phenomenon takes place,
for example, when plants propagate throughrhizomes, that is stems that grow horizontally below
the ground and bear buds which produce vertical shoots. The rhizome segments (internodes) have
a finite life span, and rot progressively from the oldest end, thus dividing the original plant into
independent organisms.

A model of the propagation of rhizomes inAlpinia specioza, a plant of the ginger family, was
proposed by Bell, Roberts, and Smith [5]. A simulation carried out using an L-system reimplemen-
tation of this model is shown in Figure 15. All rhizome segments are assumed to have the same
length. Each year (one derivation step in the simulation), an apex produces one or two daugh-
ter segments. The decision mechanism is expressed using stochastic productions. The segments
persist for seven years from their creation, then die off thereby dividing the plant.

The death of segments can be captured using productions of typeF �! f , which replace “old”
segmentsF by invisible links (turtle movements)f . This replacement guarantees that the separated
organisms will maintain their relative positions. Although the effect is visually correct, maintaining

18

a b c

Figure 16: Basitonic (a), mesotonic (b), and acrotonic (c) branching structures differ by the position
of the most developed branches on the stem.

Figure 17: Development of a basitonic branching structure. The thin lines indicate segments cre-
ated in the current derivation step.

any type of connection between the separated plants is artificial. An alternative solution is to extend
the notion of L-systems so that they operate onsetsof words, instead of individual words. In this
case, once a branching structure becomes disconnected due to the death of an internode, each of
the resulting structures develops separately (Problems 7.3, 7.4).

8 Information flow in growing plants

In this section we consider the propagation of control information through the structure of the
developing plant (endogenous information flow[53]), which is captured by context-sensitive pro-
ductions in the framework of L-systems. The conceptual elegance and expressive power of context-
sensitive productions are among the most important assets of L-systems in modeling applications
(Problem 8.1).

When modeling the development of branching structures, one can often divide aspects of a
particular phenomenon into those that can be modeled using OL-systems, and those that cannot.
For example,acropetalflowering sequences (with the flowering zone progressing upwards from
the base of the plant) generally can be simulated using OL-systems (even without parameters),
since the flowers develop in the same order in which they have been formed by the apices of
their supporting branches. In contrast,basipetalsequences (with the flowering zone progressing
downwards) require additional control mechanisms, and can be best explained in terms of the flow
of control signalsthrough the growing structures [31, 61, 62]. An analogous distinction can be
observed betweenbasitonicstructures on the one hand, andmesotonicandacrotonicstructures on
the other hand (see Figure 16). It is intuitively clear that basitonic structures can be created using
OL-systems: the lower branches are created first and, consequently, have more time to develop
than the upper branches. For example, the following L-system simulates the development of the
simple monopodial structure shown in Figure 17.

19

Figure 18: Development of a mesotonic branching structure controlled by an acropetal signal.
Wide lines indicate the internodes reached by the signal. The stages shown correspond to derivation
lengths 12 – 24 – 36 – 48 – 60

! : A

p1 : A ! F [�B][+B]A
p2 : B ! FB

In contrast, indeterminate (arbitrarily large) mesotonic and acrotonic structures cannot be gen-
erated using simple deterministic OL-systems without parameters [60]. The proposed mechanisms
for modeling these structures can be divided into two categories: those using parameters to char-
acterize thegrowth potentialor vigor of individual apices [46, 47], and those postulating control
of development by signals [18, 31]. The following L-system, adapted from [61, page 77], simu-
lates the development of the mesotonic structure shown in Figure 18 using an acropetal (upward
moving) signal.

20

#de�ne m 3 = � plastochron of the main axis � =
#de�ne n 4 = � plastochron of the branch � =
#de�ne u 4 = � signal propagation rate in the main axis � =
#de�ne v 2 = � signal propagation rate in the branch � =

ignore : +�=

! : S(0)F (1; 0)A(0)
p1 : A(i) : i < m� 1 �! A(i + 1)
p2 : A(i) : i == m� 1 �! [+(60)F (1; 1)B(0)]F (1; 0)=(180)A(0)
p3 : B(i) : i < n� 1 �! B(i + 1)
p4 : B(i) : i == n� 1 �! F (1; 1)B(0)
p5 : S(i) : i < u+ v �! S(i+ 1)
p6 : S(i) : i == u+ v �! "

p7 : S(i) < F (l; o) : (o == 0)&&(i == u� 1) �! #F (l; o)!S(0)
p8 : S(i) < F (l; o) : (o == 1)&&(i == v � 1) �! #F (l; o)!S(0)
p9 : S(i) < B(j) �! "

(6)

The above L-system operates under the assumption that the context-sensitive productionp9
takes priority overp3 or p4, and that the symbols+, �, = are ignored during the context matching
(c.f. [61]). The axiom! describes the initial structure as an internodeF terminated by an apex
A. The signalS is placed at the base of this structure. According to productionsp1 and p2,
the apexA periodically produces a lateral branch and adds an internode to the main axis. The
period (called theplastochroneof the main axis) is controlled by the constantm. Productionsp3
andp4 describe the development of the lateral branches, where new segmentsF are added with
plastochronen. Productionsp5 to p8 describe the propagation of the signal through the structure.
The signal propagation rate isu in the main axis, andv in the branches. Productionp9 removes
the apexB when the signal reaches it, thus terminating the development of the corresponding
lateral branch. Figure 18 shows that, for the values of plastochrones and signal propagation rates
indicated in Equation 6, the lower branches have less time to develop than the higher branches, and
a mesotonic structure results.

In the above model, the parameter associated with the signal was used to control its propagation
rate. The signal itself acted in a binary way: it was either present or absent in a particular internode,
and controlled the development by simply removing apicesB from the structure. In many models,
however, signals represent quantifiable entities, such as the amount of mineral substances absorbed
by roots and carried upwards, or the amount of photosynthate produced by the leaves and trans-
ported down the tree. For example, Figure 19 illustrates an extension of the tree model by Borchert
and Slade (c.f. Section 6) with an endogenously controlled mechanism for shedding branches. The
model operates under the assumption that photosynthates are produced by the leaves located on
the apical branch segments (shoots) and are used at a constant rate by the internodes. Information
about the balance of photosynthates is carried basipetally (from the shoots towards the trunk). A
branch that produces less photosynthate than it uses becomes a liability and is shed by the tree.
The shedding of branches has an important impact on the structure and visual presentation of older
trees (bottom row of Figure 19).

21

Figure 19: A modification of the tree model by Borchert and Slade [7]. The branches that produce
less photosynthate than they use are shed by the tree. For clarity, leaves are not shown.

22

a b c

*

d e

Figure 20: Development of a branching structure simulated using an L-system implementation of
the model by Borchert and Honda. (a) Development not affected by pruning; (b, c) the structure
immediately before and after pruning; (d, e) the subsequent development of the pruned structure.

In the above model, the shedding had only a limited effect on the development of the remaining
parts of the tree. In nature, trees may compensate for the loss of a branch by the more vigorous
growth of other branches. A model that captures this phenomenon has been proposed by Borchert
and Honda [6], and is illustrated in Figure 20. In this case, basipetal signals originating at each
node carry information about the size of branches. This information is used to allocate “fluxes”
that propagate acropetally and determine the vigor of the apices. Pruning of a branch redirects the
fluxes to the remaining branches and accelerates their growth.

Context-sensitive L-systems can also be used to simulate phenomena other than endogenously
propagating signals. For example, Figure 21 shows a simple model of a plant attacked by an insect.
The insect feeds on the apical buds; a branch that no longer carries any buds wilts. The insect is
assumed to move only along the branches, thus its motions can be captured using context-sensitive
L-systems. In the example under consideration, the insect systematically visits all buds, using the
depth-first strategy for traversing a tree structure. Extensions of this model, including different
traversing and feeding strategies, numbers of insects, etc., can be introduced.

9 Plants and the environment

The turtle interpretation of L-systems described in Section 5 creates the geometric representation of
the model in a postprocessing step, with no effect on the operation of the L-system itself. Referring
to Figure 5, the flow of information regarding position and orientation of the modules is postponed
until all component modules are already determined. In this section we present anenvironmentally-
sensitive extensionof L-systems, which makes information about position and orientation of the
modules available at each derivation step. Consequently, it is possible to model the influence
of predefined environmental factors, such as the presence of obstacles, on a growing plant. Our
presentation is based on the paper [59] and includes its edited sections.

In environmentally-sensitive L-systems, the generated string is interpreted after each derivation

23

Figure 21: Simulation of the development of a plant attacked by an insect

24

µ
1

(0,1)

0

1

2

3

10 2

x

y

µ
2

(0,2) (1,2)

0

1

2

3

10 2

x

y

µ
3

(0,3) (2,3)

(2,2)

0

1

2

3

10 2

x

y

Figure 22: Assignment of values to query modules

step, and turtle attributes found during the interpretation are returned as parameters to reserved
query modulesin the string. Each derivation step is performed as in parametric L-systems, except
that the parameters associated with the query modules remain undefined. During interpretation,
these modules are assigned values that depend on the turtle’s position and orientation in space.
Syntactically, the query modules have the form?X(x; y; z), whereX = P;H; U; orL. Depending
on the actual symbolX, the values of parametersx, y, andz represent a position or an orientation
vector. In the two-dimensional case, the coordinatez may be omitted.

The operation of the query module is illustrated by a simple environmentally-sensitive L-
system, given below.

! : A

p1 : A ! F (1)?P (x; y)� A

p2 : F (k) ! F (k + 1)

The following strings are produced during the first three derivation steps.

�0
0
: A

�0 : A

�0
1
: F (1)?P (?; ?)� A

�1 : F (1)?P (0; 1)� A

�0
2
: F (2)?P (?; ?)� F (1)?P (?; ?)� A

�2 : F (2)?P (0; 2)� F (1)?P (1; 2)� A

�0
3
: F (3)?P (?; ?)� F (2)?P (?; ?)� F (1)?P (?; ?)� A

�3 : F (3)?P (0; 3)� F (2)?P (2; 3)� F (1)?P (2; 2)� A

Strings�0
0
, �0

1
, �0

2
, and�0

3
represent the axiom and the results of production application before the

interpretation steps. Symbol? indicates an undefined parameter value in a query module. Strings
�1, �2, and�3 represent the corresponding strings after interpretation. It has been assumed that
the turtle is initially placed at the origin of the coordinate system, vector~H is aligned with they
axis, vector~L points in the negative direction of thex axis, and the angle of rotation associated
with module “�” is equal to90�. Parameters of the query modules have values representing the
positions of the turtle shown in Figure 22.

The above example illustrates the notion of derivation in an environmentally-sensitive L-system,
but it is otherwise contrived, since the information returned by the query modules is not further
used. A more realistic example, presenting a simple model of tree response to pruning, is given
below. As described, for example, by Hall´eet al.[23, Chapter 4] and Bell [4, page 298], during the

25

normal development of a tree many buds do not produce new branches and remain dormant. These
buds may be subsequently activated by the removal of leading buds from the branch system (trau-
matic reiteration), which results in an environmentally-adjusted tree architecture. The following
L-system represents the extreme case of this process, where buds are activated only as a result of
pruning.

! : FA?P (x; y)
p1 : A > ?P (x; y) : !prune(x; y)! @oF=(180)A
p2 : A > ?P (x; y) : prune(x; y)! T%
p3 : F > T ! S

p4 : F > S ! SF

p5 : S ! "

p6 : @o > S ! [+FA?P (x; y)]

The user defined function

prune(x; y) = (x < �L=2)k(x > L=2)k(y < 0)k(y > L);

defines a squareclipping boxof dimensionsL � L that bounds the growing structure. According
to axiom!, the development begins with an internodeF supporting apexA and query module
?P (x; y). The initial development of the structure is described by productionp1. In each step, the
apexA creates a dormant bud@o and an internodeF . The module=(180) rotates the turtle around
its own axis (the heading vector~H), thus laying a foundation for an alternating branching pattern.
The query module?P (x; y), placed by the axiom, is the right context for productionp1 and returns
the current position of apexA. When a branch extends beyond the clipping box, productionp2
removes apexA, cuts off the query module?P (x; y) using the symbol%, and generates the pruning
signalT . In the presence of this signal, productionp3 removes the last internode of the branch
that extends beyond the clipping box and creates bud-activating signalS. Productionsp4 andp5
propagate this signal basipetally (downwards), until it reaches a dormant bud@o. Productionp6
induces this bud to initiate a lateral branch consisting of internodeF and apexA followed by
query module?P (x; y). According to productionp1, this branch develops in the same manner as
the main axis. When its apex extends beyond the clipping box, it is removed by productionp2, and
signalS is generated again. This process may continue until all dormant buds have been activated.

Selected phases of the described developmental sequence are illustrated in Figure 23. In deriva-
tion step 6 the apex of the main axis grows out of the clipping box. In step 7 this apex and the last
internode are removed from the structure, and the bud-activating signalS is generated. As a result
of bud activation, a lateral branch is created in step 8. As it also extends beyond the bounding box,
it is removed in step 9 (not shown). SignalS is generated again, and in step 10 it reaches a dormant
bud. The subsequent development of the lateral branches, shown in the middle and bottom rows of
Figure 23, follows a similar pattern.

The above L-system simulates the response of a tree to pruning using a schematic branching
structure. Below we incorporate a similar mechanism into the more realistic stochastic tree model
by Borchert and Slade, discussed in Section 6.

26

Figure 23: A simple model of a tree’s response to pruning. Top row: derivation steps 6,7,8, and
10; middle row: steps 12, 13, 14, and 17; bottom row: steps 20, 40, 75, and 94. Small black circles
indicate dormant buds, the larger circles indicate the position of signalS.

Figure 24: Simulation of tree response to pruning. The structures shown have been generated in 3,
6, 9, 13, 21, and 27 steps. Leaves have been omitted for clarity.

27

Figure 25: A model of the topiary garden at Levens Hall, England

28

Figure 26: A simple model of a climbing plant

! : FA(1)?P (x; y; z)
p1 : A(k) > ?P (x; y; z) : !prune(x; y; z) !

=(�)[+(�)FA(k + 1)?P (x; y; z)]� (�)FA(k + 1) : minf1; (2k + 1)=k2g
p2 : A(k) > ?P (x; y; z) : !prune(x; y; z) !

=(�)B(k + 1; k + 1)� (�)FA(k + 1) : maxf0; 1� (2k + 1)=k2g
p3 : A(k) > ?P (x; y; z) : prune(x; y; z)! T%
p4 : F > T ! S

p5 : F > S ! SF

p6 : S ! "

p7 : B(m;n) > S ! [+(�)FA(am+ bn + c)?P (x; y; z)]
p8 : B(m;n) > F ! B(m+ 1; n)

According to axiom!, the development begins with a single internodeF supporting apexA(1)
and query module?P (x; y; z). Productionsp1 andp2 describe the spontaneous growth of the tree
within the volume characterized by a user-defined clipping function prune(x; y; z). Productionsp3
to p7 specify the mechanism of the tree’s response to pruning. Specifically, productionp3 removes
the apexA() after it has crossed the clipping surface, cuts off the query module?P (x; y; z), and
creates pruning signalT . Next, p4 removes the last internode of the pruned branch and initiates
bud-activating signalS, which is propagated basipetally by productionsp5 andp6. WhenS reaches
a dormant budB(), productionp7 transforms it into a branch consisting of an internodeF , apex
A(), and query module ?P(x,y,z).

The parameter value assigned by productionp7 to apexA() is derived as follows. According
to productionp2, both parameters associated with a newly created budB() are set to the age of
the tree at the time of bud creation (expressed as the the number of derivation steps). Production
p8 updates the value of the first parameter (m), so that it always indicates the actual age of the
tree. The second parameter (n) remains unchanged. The initialbiological age[4, page 315] of the

29

activated apexA() in productionp7 is a linear combination of parametersm andn, calculated using
the expressionam + bn + c. Since rulep1 is more likely to be applied for young apices (for small
values of parameterk), by manipulating constantsa, b, andc it is possible to control the bifurcation
frequency of branches created as a result of traumatic reiteration. This is an important feature of
the model, because in nature the reiterated branches tend to be more juvenile and vigorous than the
remainder of the tree [4, page 298].

The operation of this model is illustrated in Figure 24. The clipping form is a cube with an
edge length 12 times longer than the internode length. The constant values used in productionp7
area = 0, b = 1, andc = �5.

By changing the clipping function, one can shape plant models to a variety of artificial forms.
For example, Figure 25 presents a synthetic image inspired by the Levens Hall garden in England,
considered the most famous topiary garden in the world [9, pages 52–57].

Pruning is only one of a range of phenomena that can be modeled using environmentally-
sensitive L-systems. A different example is given in Figure 26. In this case, a climbing plant
detects the presence of a supporting pole and winds around it. In contrast to the earlier models
of plants growing around obstacles [2, 21, 22], the L-system model captures thenutation, or the
spiralling movement of the free stem tip “searching” for support. Once a collision with the pole
has been detected, a signal is sent basipetally (down the stem), freezing further motions of the stem
below the contact point.

10 Conclusions

L-systems were introduced almost thirty years ago and have been extensively studied, yet they
continue to represent a fascinating area for further research. This situation is due to several factors.
Computer graphics has made it possible to visualize the structures generated by L-systems, thus
turning them from a theoretical concept to a programming language for synthesizing fractals and
realistic plant images. The modeling power of L-systems, made apparent by the synthetic images,
has attracted a growing number of biologists interested in modular architecture and plant devel-
opment. Biological applications frequently require the inclusion of environmental factors into the
models, which fuels the work on environmentally-sensitive extensions to L-systems. Furthermore,
the interest of biologists in modeling actual plant species is complemented by the fundamental
studies of emergence in the field of artificial life. These varied interests and applications place
L-systems in the center of interdisciplinary studies bridging theoretical computer science, com-
puter graphics, biology, and artificial life. Even the material in these notes raises many nontrivial
questions. Some of them are listed in the next section.

11 Problems

1.1. The importance of simulation to the studies of emergent phenomena led Darley to the fol-
lowing characterization [10, Page 412]:

Emergent phenomena are those for which the amount of computation necessary
for prediction from an optimal set of rules, classification and analysis, even de-

30

rived from an idealised perfect understanding, can never improve upon the amount
of computation necessary to simulate the system directly from our knowledge of
the rules of its interactions.

Based on this characterization, propose a formal definition of emergence expressed in terms
of algorithmic complexity. Illustrate your definition by examples of emergent and non-
emergent phenomena. Compare your definition with Darley’s own elaboration of his con-
cept.

2.1. Hallé, Oldeman, and Tomlinson introduced the termarchitectural modelto denote a program
that determines successive stages of the development of a tree [23]. Compare this notion with
the developmental models of plants expressed using L-systems.

2.2. Room, Maillette and Hanan classified different types of construction units that can be used
to describe the modular growth of plants [64]. Analyze the relationship between these units
and the notion of a module in L-systems.

2.3. Plant morphogenesis has been studied from different perspectives and at various levels of
abstraction. The resulting models include:

� genetic[49] andmechanistic[20] models operating at the molecular level,

� reaction-diffusionmodels operating at the chemical level [34],

� L-systemmodels operating at the level of modules,

� models of organ distribution and overall plant shape based onecologicalarguments [29].

Using the indicated references as the starting point for investigation, explain how models
operating at different levels relate to each other. Can a counterpart of thecorrespondence
principle (“when theories correspond, their predictions must correspond”) introduced by
Niels Bohr for physics be applied to describe these relations?

3.1. Propose a possibly general yet precise definition of a production, applicable to a wide range
of rewriting systems (for example, Chomsky grammars, graph grammars [13], shape gram-
mars [72], and Koch constructions).

3.2. Biologists introduce a distinction between thecalendar ageof a plant, reflecting the objec-
tive progress of time, andphysiological age, reflecting the state of plant development. Bell
explains this distinction as follows [4, page 315],

A tree seedling in an open habitat may be one year old and rapidly approaching the
juvenile state, whilst another individual of the same species growing in a closed
habitat may be many years old, and held at the seedling state until light conditions
improve.

Analyze the relationship between calendar age and physiological age in the context of sim-
ulating plant development.

31

3.3. Formulate a definition of a Koch construction, encompassing the different variants described
by Mandelbrot [48]. Compare your definition with those proposed previously [54, 63].

3.4. Propose a modification of the Koch construction, capturing the derivation shown in Fig-
ure 4b.

4.1. Chien and J¨urgensen [8] introduced a parametrized extension of L-systems called VD0L-
systems. Compare this concept with the parametric L-systems described in Section 4.

4.2. Compare parametric L-systems and attribute grammars [33, 35].

4.3. Using the formal definition of a Koch construction obtained as a solution to Problem 3.3,
investigate the relationship between the classes of figures and developmental sequences gen-
erated by Koch constructions and L-systems with turtle interpretation. Explain why many
fractals can be generated using either method [51, 56, 61].

7.1. Propose a formal definition of derivation in L-systems with the cut symbol%.

7.2. In order to capture the phenomenon of dynamic equilibrium in a structure, Herman and
Walker [28] (see also [66, pages 70–78]) introduced the notion ofadult languages. By
definition, a wordw belongs to the adult languageLA(G) of an L-systemG iff w is generated
by G and it derives itself:w =) w. Extend this definition to characterize biologically
important situations where:

1. a part of the growing structure (such as the schematic tree crown shown in Figure 13)
does not change over time, although other components of the structure may change;

2. the entire structure or some part of it (such as the crown of the palm in Figure 14)
undergoes a cyclic sequence of changes.

7.3. Propose a formal definition of L-systems suitable for modeling organisms that break up
into separate structures. Assume that the organisms have branching topology. Extend turtle
interpretation to properly handle the geometry of the resulting sets of structures.

7.4. Rozenberg, Ruohonen, and Salomaa [65] (see also [68, 69]) introducedL-systems with frag-
mentation, which can serve as a model of reproductive processes in plants. Compare L-
systems with fragmentation with your solution to the previous problem.

8.1. Compare the notions of context-sensitivity, self-modifying code, and self-replication.

10.1. The following exercise concludes the first textbook on L-systems [27, page 341]:

Go out to a nearby field. Pick a flower. Simulate its development.

Solve this exercise for several plants. Identify simple and difficult components of the solu-
tions. On this basis, propose areas for further research on the application of L-systems to
plant modeling.

32

12 Acknowledgements

These notes incorporate edited versions of publications written with several co-authors. In this
context, we acknowledge contributions by the late Professor Aristid Lindenmayer, and by Mark
James. Many interesting ideas resulted from discussions with Dr. Peter Room; in particular, the
idea of using L-systems for the simulation of interactions between plants and insects belongs to
him. Lynn Mercer provided many useful comments, which we tried to incorporate into the final
version of these course notes. The underlying research has been sponsored by grants and graduate
scholarships from the Natural Sciences and Engineering Research Council of Canada.

33

References

[1] H. Abelson and A. A. diSessa.Turtle geometry. M.I.T. Press, Cambridge, 1982.

[2] James Arvo and David Kirk. Modeling plants with environment-sensitive automata. InPro-
ceedings of Ausgraph’88, pages 27 – 33, 1988.

[3] R. Baker and G. T. Herman. Simulation of organisms using a developmental model, parts I
and II. Int. J. of Bio-Medical Computing, 3:201–215 and 251–267, 1972.

[4] A. Bell. Plant form: An illustrated guide to flowering plants.Oxford University Press,
Oxford, 1991.

[5] A. D. Bell, D. Roberts, and A. Smith. Branching patterns: the simulation of plant architecture.
Journal of Theoretical Biology, 81:351–375, 1979.

[6] R. Borchert and H. Honda. Control of development in the bifurcating branch system of
Tabebuia rosea: A computer simulation.Botanical Gazette, 145(2):184–195, 1984.

[7] R. Borchert and N. Slade. Bifurcation ratios and the adaptive geometry of trees.Botanical
Gazette, 142(3):394–401, 1981.

[8] T. W. Chien and H. J¨urgensen. Parameterized L systems for modelling: Potential and lim-
itations. In G. Rozenberg and A. Salomaa, editors,Lindenmayer systems: Impacts on the-
oretical computer science, computer graphics, and developmental biology, pages 213–229.
Springer-Verlag, Berlin, 1992.

[9] P. Coats.Great gardens of the Western world. G. P. Putnam’s Sons, New York, 1963.

[10] V. Darley. Emergent phenomena and complexity. In R. A. Brooks and P. Maes, editors,
Artificial Life IV. Proceedings of the Fourth International Workshop on the Synthesis and
Simulation of Living Systems, pages 411–416. MIT Press, Cambridge, 1994.

[11] M. J. M. de Boer.Analysis and computer generation of division patterns in cell layers using
developmental algorithms. PhD thesis, University of Utrecht, 1989.

[12] M. J. M. de Boer, F. D. Fracchia, and P. Prusinkiewicz. A model for cellular development
in morphogenetic fields. In G. Rozenberg and A. Salomaa, editors,Lindenmayer systems:
Impacts on theoretical computer science, computer graphics, and developmental biology,
pages 351–370. Springer-Verlag, Berlin, 1992.

[13] H. Ehrig, M. Korff, and M. Löwe. Tutorial introduction to the algebraic approach of graph
grammars based on double and single pushouts. In H. Ehrig, H.-J. Kreowski, and G. Rozen-
berg, editors,Graph grammars and their application to computer science; Fourth Interna-
tional Workshop, Lecture Notes in Computer Science 532, pages 24–37. Springer-Verlag,
Berlin, 1990.

[14] J. D. Foley and A. Van Dam.Fundamentals of interactive computer graphics. Addison-
Wesley, Reading, Massachusetts, 1982.

34

[15] F. D. Fracchia, P. Prusinkiewicz, and M. J. M. de Boer. Animation of the development of
multicellular structures. In N. Magnenat-Thalmann and D. Thalmann, editors,Computer
Animation ’90, pages 3–18, Tokyo, 1990. Springer-Verlag.

[16] D. Frijters. Mechanisms of developmental integration ofAster novae-angliaeL. and Hi-
eracium murorumL. Annals of Botany, 42:561–575, 1978.

[17] D. Frijters. Principles of simulation of inflorescence development.Annals of Botany, 42:549–
560, 1978.

[18] D. Frijters and A. Lindenmayer. A model for the growth and flowering ofAster novae-angliae
on the basis of table (1,0)L-systems. In G. Rozenberg and A. Salomaa, editors,L Systems,
Lecture Notes in Computer Science 15, pages 24–52. Springer-Verlag, Berlin, 1974.

[19] D. Frijters and A. Lindenmayer. Developmental descriptions of branching patterns with par-
acladial relationships. In A. Lindenmayer and G. Rozenberg, editors,Automata, languages,
development, pages 57–73. North-Holland, Amsterdam, 1976.

[20] B. C. Goodwin. Generative explanations of plant form. In D. S. Ingram and A. Hudson,
editors,Shape and form in plant and fungi, pages 3–16. Acedemic Press, London, 1994.

[21] N. Greene. Organic architecture. SIGGRAPH Video Review 38, segment 16, ACM SIG-
GRAPH, New York, 1988.

[22] N. Greene. Voxel space automata: Modeling with stochastic growth processes in voxel space.
Proceedings of SIGGRAPH ’89 (Boston, Mass., July 31–August 4, 1989), inComputer
Graphics23, 4 (August 1989), pages 175–184, ACM SIGGRAPH, New York, 1989.

[23] F. Hallé, R. A. A. Oldeman, and P. B. Tomlinson.Tropical trees and forests: An architectural
analysis.Springer-Verlag, Berlin, 1978.

[24] J. S. Hanan. PLANTWORKS: A software system for realistic plant modelling. Master’s
thesis, University of Regina, 1988.

[25] J. S. Hanan.Parametric L-systems and their application to the modelling and visualization
of plants. PhD thesis, University of Regina, June 1992.

[26] G. T. Herman and W. H. Liu. The daughter of CELIA, the French flag, and the firing squad.
Simulation, 21:33–41, 1973.

[27] G. T. Herman and G. Rozenberg.Developmental systems and languages.North-Holland,
Amsterdam, 1975.

[28] G. T. Herman and A. Walker. Context-free languages in biological systems.International
Journal of Computer Mathematics, 4:369–391, 1975.

[29] H. S. Horn.The adaptive geometry of trees. Princeton University Press, Princeton, 1971.

[30] M. James, J. Hanan, and P. Prusinkiewicz. CPFG version 2.0 user’s manual. Manuscript,
Department of Computer Science, The University of Calgary, 1993, 50 pages.

35

[31] J. M. Janssen and A. Lindenmayer. Models for the control of branch positions and flower-
ing sequences of capitula inMycelis muralis(L.) Dumont (Compositae).New Phytologist,
105:191–220, 1987.

[32] B. W. Kernighan and D. M. Ritchie.The C programming language. Second edition.Prentice
Hall, Englewood Cliffs, 1988.

[33] D. E. Knuth. Semantics of context-free languages.Mathematical Systems Theory, 2(2):191–
220, 1968.

[34] A. J. Koch and H. Meinhardt. Biological pattern formation: from basic mechanisms to com-
plex structures. Manuscript, Max-Planck-Institut f¨ur Entwicklungsbiologie, T¨ubingen, 1993.

[35] P. M. Lewis II, D. J. Rosenkrantz, and R. E. Stearns.Compiler design theory. Addison-
Wesley, Reading, 1978.

[36] A. Lindenmayer. Mathematical models for cellular interaction in development, Parts I and II.
Journal of Theoretical Biology, 18:280–315, 1968.

[37] A. Lindenmayer. Developmental systems without cellular interaction, their languages and
grammars.Journal of Theoretical Biology, 30:455–484, 1971.

[38] A. Lindenmayer. Adding continuous components to L-systems. In G. Rozenberg and A. Sa-
lomaa, editors,L Systems, Lecture Notes in Computer Science 15, pages 53–68. Springer-
Verlag, Berlin, 1974.

[39] A. Lindenmayer. Developmental algorithms for multicellular organisms: A survey of L-
systems.Journal of Theoretical Biology, 54:3–22, 1975.

[40] A. Lindenmayer. Algorithms for plant morphogenesis. In R. Sattler, editor,Theoretical plant
morphology, pages 37–81. Leiden University Press, The Hague, 1978.

[41] A. Lindenmayer. Developmental algorithms: Lineage versus interactive control mechanisms.
In S. Subtelny and P. B. Green, editors,Developmental order: Its origin and regulation, pages
219–245. Alan R. Liss, New York, 1982.

[42] A. Lindenmayer. Positional and temporal control mechanisms in inflorescence development.
In P. W. Barlow and D. J. Carr, editors,Positional controls in plant development. University
Press, Cambridge, 1984.

[43] A. Lindenmayer. Models for multicellular development: Characterization, inference and
complexity of L-systems. In A. Kelemenov´a and J. Kelemen, editors,Trends, techniques and
problems in theoretical computer science, Lecture Notes in Computer Science 281, pages
138–168. Springer-Verlag, Berlin, 1987.

[44] A. Lindenmayer and H. J¨urgensen. Grammars of development: Discrete-state models for
growth, differentiation and gene expression in modular organisms. In G. Rozenberg and
A. Salomaa, editors,Lindenmayer systems: Impacts on theoretical computer science, com-
puter graphics, and developmental biology, pages 3–21. Springer-Verlag, Berlin, 1992.

36

[45] A. Lindenmayer and P. Prusinkiewicz. Developmental models of multicellular organisms:
A computer graphics perspective. In C. G. Langton, editor,Artificial Life, pages 221–249.
Addison-Wesley, Redwood City, 1988.

[46] H. B. Lück and J. L¨uck. Approche algorithmique des structures ramifi´ees acrotone et ba-
sitone des v´egétaux. In H. Vérine, editor,La biologie th́eoriqueà Solignac, pages 111–148.
Polytechnica, Paris, 1994.

[47] J. Lück, H. B. Lück, and M. Bakkali. A comprehensive model for acrotonic, mesotonic, and
basitonic branching in plants.Acta Biotheoretica, 38:257–288, 1990.

[48] B. B. Mandelbrot.The fractal geometry of nature. W. H. Freeman, San Francisco, 1982.

[49] E. M. Meyerowitz. The genetics of flower development.Scientific American, pages 56–65,
November 1994.

[50] S. Papert.Mindstorms: Children, computers and powerful ideas. Basic Books, New York,
1980.

[51] P. Prusinkiewicz. Graphical applications of L-systems. InProceedings of Graphics Interface
’86 — Vision Interface ’86, pages 247–253, 1986.

[52] P. Prusinkiewicz. Applications of L-systems to computer imagery. In H. Ehrig, M. Nagl,
A. Rosenfeld, and G. Rozenberg, editors,Graph grammars and their application to com-
puter science; Third International Workshop, pages 534–548. Springer-Verlag, Berlin, 1987.
Lecture Notes in Computer Science 291.

[53] P. Prusinkiewicz. Visual models of morphogenesis.Artificial Life, 1:61–74, 1994.

[54] P. Prusinkiewicz and M. Hammel. Language-restricted iterated function systems, Koch con-
structions, and L-systems. In J. C. Hart, editor,New directions for fractal modeling in com-
puter graphics, pages 4.1–4.14. ACM SIGGRAPH, 1994. Course Notes 13.

[55] P. Prusinkiewicz, M. Hammel, and E. Mjolsness. Animation of plant development.Computer
Graphics (SIGGRAPH ’93 Conference Proceedings), pages 351–360, August 1993.

[56] P. Prusinkiewicz and J. Hanan.Lindenmayer systems, fractals, and plants, volume 79 of
Lecture Notes in Biomathematics. Springer-Verlag, Berlin, 1989.

[57] P. Prusinkiewicz and J. Hanan. Visualization of botanical structures and processes using para-
metric L-systems. In D. Thalmann, editor,Scientific Visualization and Graphics Simulation,
pages 183–201. J. Wiley & Sons, Chichester, 1990.

[58] P. Prusinkiewicz and J. Hanan. L-systems: From formalism to programming languages.
In G. Rozenberg and A. Salomaa, editors,Lindenmayer systems: Impacts on theoretical
computer science, computer graphics, and developmental biology, pages 193–211. Springer-
Verlag, Berlin, 1992.

37

[59] P. Prusinkiewicz, M. James, and R. Mˇech. Synthetic topiary. Proceedings of SIGGRAPH ’94
(Orlando, Florida, July 24–29, 1994), pages 351–358, ACM SIGGRAPH, New York, 1994.

[60] P. Prusinkiewicz and L. Kari. Sub-apical L-systems. Technical Report 95/552/4, University
of Calgary, March 1995.

[61] P. Prusinkiewicz and A. Lindenmayer.The algorithmic beauty of plants. Springer-Verlag,
New York, 1990. With J. S. Hanan, F. D. Fracchia, D. R. Fowler, M. J. M. de Boer, and L.
Mercer.

[62] P. Prusinkiewicz, A. Lindenmayer, and J. Hanan. Developmental models of herbaceous plants
for computer imagery purposes. Proceedings of SIGGRAPH ’88 (Atlanta, Georgia, August
1–5, 1988), inComputer Graphics22, 4 (August 1988), pages 141–150, ACM SIGGRAPH,
New York, 1988.

[63] P. Prusinkiewicz and G. Sandness. Koch curves as attractors and repellers.IEEE Computer
Graphics and Applications, 8(6):26–40, November 1988.

[64] P. M. Room, L. Maillette, and J. Hanan. Module and metamer dynamics and virtual plants.
Advances in Ecological Research, 25:105–157, 1994.

[65] G. Rozenberg, K. Ruohonen, and A. Salomaa. Developmental systems with fragmentation.
International Journal of Computer Mathematics, 5:177–191, 1976.

[66] G. Rozenberg and A. Salomaa.The mathematical theory of L-systems.Academic Press, New
York, 1980.

[67] G. Rozenberg and A. Salomaa. When L was young. In G. Rozenberg and A. Salomaa, editors,
The book of L, pages 383–392. Springer-Verlag, Berlin, 1986.

[68] K. Ruohonen. Developmental systems with interaction and fragmentation.Information and
Control, 28:91–112, 1975.

[69] K. Ruohonen. JL systems with non-fragmented axioms: the hierarchy.International Journal
of Computer Mathematics, 5:143–156, 1975.

[70] A. Salomaa.Formal languages.Academic Press, New York, 1973.

[71] A. R. Smith. Plants, fractals, and formal languages. Proceedings of SIGGRAPH ’84 (Min-
neapolis, Minnesota, July 22–27, 1984) inComputer Graphics, 18, 3 (July 1984), pages
1–10, ACM SIGGRAPH, New York, 1984.

[72] G. Stiny. Pictorial and formal aspects of shape and shape grammars. Birkhäuser-Verlag,
Basel and Stuttgart, 1975.

[73] A. L. Szilard and R. E. Quinton. An interpretation for DOL systems by computer graphics.
The Science Terrapin, 4:8–13, 1979.

[74] C. E. Taylor. “Fleshing out” Artificial Life II. In C. G. Langton, C. Taylor, J. D. Farmer, and
S. Rasmussen, editors,Artificial Life II , pages 25–38. Addison-Wesley, Redwood City, 1992.

38

