Fire Simulator and Fractals: using a visualization library to introduce CUDA

Tia Newhall and Andrew Danner
Computer Science Dept. Swarthmore College, Swarthmore, PA USA

Introducing CUDA w/ Visualization

- Aids in easily seeing common CUDA bugs
 - Mapping threads and blocks to data elements
 - Cuda memory copy and initialization
 - Synchronization
- It’s fun! (which aids in learning)
 - Students spend more time experimenting
- Used in 2 upper-level undergrad courses
 - Graphics: GPGPU programming on the GPU
 - Parallel & Distributed: another paradigm/model/arch

Visualization Library Design

- Easy to use Library
 - User focuses on CUDA kernels
 - Library handles OpenGL
 - Automatic animation

CUDA Kernel to assign colors (mandatory)

Users can add extra kernels/Data buffers to extend interface

Fractals

- Julia Sets
 - Iteratively compute trajectories of complex numbers
 - Similar to vector math
- Assignment Goals
 - Connect core graphics to CUDA
 - Experiment to find good grid layouts
 - Use kernel timers
- Advanced Extensions
 - Hack OpenGL shaders
 - Image is a texture map

Forest Fire Simulator

- Discrete Event Simulator
 - World of lakes and forest
 - World config parameters
 - Lightning strike starts fire
 - Temp cycle as cell burns
- Simulation Parameters
 - Probability cell catches fire
 - Rate of fire burn
 - Time steps to simulate
- CUDA
 - Writing kernels
 - CPU-GPU mem alloc/copy
 - Mapping 2D thread blocks to data
 - Using CuRand
 - Performance experiments with different thread/block/grid layouts

Some Student Solutions:

- Stream-GPU architectures
- GPGPU computing
- SPMD
- Heterogeneous Systems
- Parallel Algorithms
- Synchronization and Memory Management

Parallel Topics

More Information/Resources

https://www.cs.swarthmore.edu/edupar18