Fire Simulator and Fractals: using a vi-
sualization library to introduce CUDA

Tia Newhall, Andrew Danner
Computer Science Department
Swarthmore College

We present two assignments that introduce
CUDA [5] programming to upper-level undergradu-
ate students. The assignments use an OpenGL 4.x [6]
library we developed for visualizing computation on
the GPU. The library allows students to see their
CUDA programs execute on the GPU, which aids in
their debugging of their first CUDA programs. Stu-
dents also enjoy these visual assignments and they
often add interesting extensions to the required parts.

Our OpenGL library uses ideas from the “CUDA
By Example” [2] text and transparently allocates a
display grid on the GPU that allows students to color
individual pixels via a CUDA kernel call. CUDA pro-
grams that use this flexible library may allocate addi-
tional GPU bulffers to store non-color data. Students
then write one or more CUDA kernels to update their
data and the display grid. The library then repeat-
edly calls these kernels in an animation loop. The li-
brary is designed to be simple enough for students to
use knowing only the basics of CUDA, and no knowl-
edge of OpenGL is required.

Fire Simulator Program: The Fire Simulator
program is our parallel version of a discrete event
simulation [§] of a two-dimensional grid world con-
sisting of forests and lakes. Each grid cell is classified
as water, forest, fire, or burnt. Forest cells transition
to fire cells based on some probability if one or more
of their neighbors are on fire. Fire cells transition to
burnt cells after some number of time steps. Each
step of the computation computes in parallel the val-
ues for all cells for the next time step and updates
the display grid. The program uses random numbers
in CUDA to determine if a cell catches fire. Com-
mand line arguments specify parameters of the world
and fire simulation including the burn rate and the
probability a cell catches fire.

The primary TCPP [7] concepts covered in this
application are: Stream-GPU architectures; gpgpu
computing; synchronization; heterogeneous systems;
SPMD; and memory management. The assignment
is used in our Parallel and Distributed Computing
course [3], an upper-level undergraduate course. The
main purpose of this lab is to introduce CUDA pro-
gramming to students as one of several program-
ming models that they could use in their indepen-

dent course projects. Other labs in the course in-
troduce client-server socket programming, pthreads,
MPI, and OpenMP.

As an introduction to CUDA, we find that this
assignment works very well. In particular, the vi-
sualization helps students to easily see bugs in their
CUDA grid-block-thread mappings of the CUDA ker-
nels that they write. We have also had students im-
plement impressive extensions that simulate more re-
alistic burning functions, create interesting starting
worlds, and visualize the fire simulation in more real-
istic ways. This assignment could be easily modified
for any type of discrete event simulation application.
This assignment often results in many students want-
ing to use CUDA in their main course project. The
main weakness of this project is that it requires us-
ing cuRAND library. However, we give them almost
all of the cuRAND code that they need to use with
the assignment starting point code. The other main
weakness is that it requires an OpenGL visualization
library [4], though we hide all the OpenGL details in
our library implementation.

Fractal Generation: Though our library does
not assume familiarity with OpenGL and abstracts
away all the OpenGL details, students familiar with
OpenGL can still use our library to explore CUDA
and connect TCPP topics back to core computer
graphics concepts. Internally, the display grid in our
library is both a CUDA GPU buffer and an OpenGL
texture map. In our Computer Graphics course [,
we have students develop multiple kernels to compute
and render 2D Julia sets [4], similar to examples of
Sanders and Kandrot [2]. Our library also includes
an abstract timing class so students can easily com-
pare performance of CPU only approaches and mul-
tiple CUDA kernels for generating images. Instead of
seeing a static 2D image, graphics students enjoyed
seeing that their CUDA image was indeed a texture
map and could be applied to arbitrary shapes includ-
ing animated spheres and cubes.

This assignment covers the same TCPP topics
as the fire simulation assignment, but additionally
makes connections between CUDA and more tradi-
tional OpenGL programming.

Assignments and Code: More information
about these assignments, including example assign-
ment write-ups and full starting point code for both
assignments is available online [4].



References

1]

Andrew Danner. (CS40: Computer Graphics.
https://www.cs.swarthmore.edu/~adanner/
cs40/, 2016.

Edward Kandrot Jason Sanders. CUDA by Ex-
ample. Addison Wesley, 2010.

Tia Newhall. CS87: Parallel and Distributed
Computing. https://www.cs.swarthmore.edu/
~newhall/cs87/, 2018.

Tia Newhall and Andrew Danner. CUDA
Fire Simulation and Fractals: Assignments and
Resources. https://www.cs.swarthmore.edu/
edupar18| 2018.

NVIDIA. NVIDIA CUDA Compute Unified De-
vice Architecture. https://developer.nvidia.

com/about-cuda, 2018.

opengl. OpenGL Overview. http://www.
opengl.org/about, 2018.

Prasad S. et al. NSF/IEEE-TCPP curriculum
initiative on parallel and distributed computing
- core topics for undergraduates. http://www.
cs.gsu.edu/~tcpp/curriculum/, 2012.

Angela B. Shiflet. Spreading of Fire. http:
//nifty.stanford.edu/2007/shiflet-fire/,
2007.


https://www.cs.swarthmore.edu/~adanner/cs40/
https://www.cs.swarthmore.edu/~adanner/cs40/
https://www.cs.swarthmore.edu/~newhall/cs87/
https://www.cs.swarthmore.edu/~newhall/cs87/
https://www.cs.swarthmore.edu/edupar18
https://www.cs.swarthmore.edu/edupar18
https://developer.nvidia.com/about-cuda
https://developer.nvidia.com/about-cuda
http://www.opengl.org/about
http://www.opengl.org/about
http://www.cs.gsu.edu/~tcpp/curriculum/
http://www.cs.gsu.edu/~tcpp/curriculum/
http://nifty.stanford.edu/2007/shiflet-fire/
http://nifty.stanford.edu/2007/shiflet-fire/

