CS41 Lab 6: Greedy Algorithms

October 6, 2022

In typical labs this semester, you’ll be working on a number of problems in groups of 3-4
students. You will not be handing in solutions; the primary purpose of these labs is to have a
low-pressure space to discuss algorithm design. However, it will be common to have some overlap
between lab exercises and homework sets.

1. Cell service on the Appalachian Trail.

The Appalachian Trail is an approximately 2100 mile trail that runs north-south from Maine
to Georgia. Recently, several hikers have started to demand cell service along the trail.
Other hikers object, assuming that cell phones will ruin the hiking experience. Leaders of the
Appalachian Trail Conservatory, who manage the trail, have decided on a compromise — they
plan to install cell phone base stations, but only for service at one of the camground areas
on the trail. You’ve been hired to help decide where to place the base stations. Your goal is
to place cell phone base stations at certain points on the trail, so that every campground is
within five miles of the base stations.

Give an efficient algorithm that achieves this goal, using as few base stations as possible.
Your algorithm’s input should be a List of campground locations, and you should output a
List of base station locations that covers all campground locations using the minimal number
of base stations.

2. Dijkstra’s Algorithm. In CS35, you likely saw the shortest path on weighted graphs prob-
lem. In this problem, each edge e has an edge length /., and the length of a path s ~~ ¢ is
the sum of the edge lengths along the path. Your goal is to find, for a specific start vertex,
the length of the shortest s ~» v path for all vertices v.

Problem: Shortest Paths
Inputs:

e A graph G = (V, E)
e For each edge e a positive edge length £,
e A start vertex s € V

Output: an array of distances d, where d[v] is the length of the shortest s ~ v path.

Below is pseudocode for Dijkstra’s Algorithm, which finds the shortest path in a graph G
between a start vertex s and any other vertex.

DUKSTRA(G, s, £)

1 S ={s}

2 d[s] = 0.

3 while S#V

4 pick v € V'\ S to minimize mine_(y .):ues d[u] + Le.
5 add v to S.

6 d[v] = dlu] + £e

7 Return d]...].



(a)
(b)

Show that Dijkstra’s Algorithm solves the shortest path problem. (Hint: use the stays
ahead method)

What is the asymptotic running time of Dijkstra’s algorithm?

If you were to implement it (in, say, C++) what data structures would you need? Would
you need any additional data structures beyond structures you've seen from CS357 If
S0, try to design an implementation for them.

Note: the pseudocode given above is high-level pseudocode. One reason why this is
high-level is because it doesn’t specify how to compute the edge e = (u,v) such that
u € S that minimized d[u] + £.. You’ll need to understand how to compute this edge
efficiently.

3. Making change (foreign edition)

Consider the problem of making change for n cents out of the fewest number of coins. Assume
that n and the coin values are positive integers (cents).

(a)

Describe a greedy algorithm to solve the problem using the EU coin denominations of 50
cents, 20 cents, 10 cents, 5 cents, 2 cents, and 1 cent. Prove your algorithm is optimal.

Describe a greedy algorithm to solve the problem using the US coin denominations of
quarters (25), dimes (10), nickels (5), and pennies (1). Prove your algorithm is optimal.

Suppose the country of Algorithmland uses denominations that are powers of ¢ for some
integer c. This country uses k+ 1 denominations of ¢, ¢!, ..., c*. Show that your greedy
algorithm works in Algorithmland as well.

Design a currency system of your choosing with at least three coin denominations such
that a greedy algorithm does not yield a minimum number of coins for some amount of
m cents. Assume that one of your denominations has value one, so a solution exists for
all values of m.



