CS41 Lab 13: Approximation Algorithms

December 8 2022

This week, we’ll continue exploring NP-COMPLETE decision problems, and develop approximation
algorithms for related versions of those problems.

1. Traveling Salesman Problem. In this problem, a salesman travels the country making

sales pitches. The salesman must visit n cities and then return to her home city, all while
doing so as cheaply as possible.
The input is a complete graph G = (V, E) along with nonnegative edge costs {c.: e € E}. A
tour is a simple cycle (vj,...,vj,,vj) that visits every vertex exactly once.> The goal is to
output the minimum-cost tour.
For many TSP applications (such as when the cost is proportional to the distance between
two cities), it makes sense for the edges to obey the triangle inequality: for every i, j, k, we
have

C(ik) < i) + k)
This version is often called METRIC-TSP.

The (decision version of the) Traveling Salesman Problem is NP-COMPLETE. For this prob-
lem, you will develop a 2-approximation algorithm for METRIC-TSP.

(a) First, to gain some intuition, consider the following graph:

(b) On your own try to identify a cheap tour of the graph.
(¢) Build some more intuition by computing the minimum spanning tree (MST) of the graph.
Let T be your minimum spanning tree.

(d) Let OPT be the cheapest tour. Show that its cost is bounded below by the cost of the
MST: cost(T) < cost(OPT).

1

except for the start vertex, which we visit again to complete the cycle



(e) Give an algorithm which returns a tour A which costs at most twice the cost of the
MST: cost(A) < 2cost(T).

(f) Conclude that your algorithm is a 2-approximation for METRIC-TSP.

2. Toy-Storage. William has lots of toys of all different sizes. You'd like to purchase a number
of bins in which to store the toys. Approximately how many bins will you need?

Let’s formalize the TOY-STORAGE problem as follows. Suppose there are n toys, with sizes
S1,.++,8n, With 0 < s; < 1 for all 4. Assume each bin has size 1 and can hold any collection
of toys whose total size is less than or equal to 1.

In this problem, you’ll develop a greedy approximation algorithm, which works by taking
each toy in turn and placing it into the first bin that can hold it. Let S:=>"" | s;.

(
(

a) Show that the optimal number of bins is at least [S].

)

b) Show that the greedy algorithm leaves at most one bin half full.

(c) Prove that the number of bins used by the greedy algorithm is at most [257].
)

(d) Prove that the greedy algorithm is a 2-approximation algorithm for the TOY-STORAGE
problem.



