
CS41 Homework 1

This homework is due at 11:59PM on Wednesday, September 7. Write your solution using LATEX.
Submit this homework using github. This is an individual homework. It’s ok to discuss approaches
at a high level. In fact, we encourage you to discuss general strategies. However, you should not
reveal specific details of a solution, nor should you show your written solution to anyone else. The
only exception to this rule is work you’ve done with a lab partner while in lab. In this case, note
(in your README file) who you’ve worked with and what parts were solved during lab.

When you submit homework assignments this semester, please keep the following in mind:

1. Don’t forget to fill out the README.md file.

2. Don’t include your name in hw1.tex. (I’d like the graders to not know who you are, to
minimize grader bias)

3. Don’t submit a .pdf – just the .tex will do.

4. Graders will compile your code from the .tex file using pdflatex. It is your responsiblity to
make sure the LATEX compiles.

The main learning goals of this homework assignment are to familiarize you with the tools/process
we use for assignments and to begin to formalize and analyze algorithms.

1. Algorithm Analysis. Consider the following algorithm for the Hiking Problem.

Hiking()

1 k = 1.
2 while you haven’t arrived at your friend:
3 hike k miles north
4 return to start
5 hike k miles south
6 return to start
7 k = 5k.

Describe the distance traveled in Hiking as a function of the initial distance from your friend
in the worst case. Express your answer in big-Oh notation. How does this algorithm compare
to the algorithms we saw in class?

2. Algorithm Design. Choose a problem you encounter in everyday life (e.g. how to get from
your dorm room to Sharples by 8:30AM, or how to get into college) and describe an algorithm
for solving that problem.

Be as specific and descriptive as you can.

3. A horde of seven barbarians has recently returned from pillaging the countryside, looting a
hoard of 49 gold coins in the process. Now, they would like to divide their treasure. Being
the enlightened barbarians they are, they have decided to vote on how to best divide the
treasure.

1



The barbarians’ voting process is as follows. First, the strongest barbarian proposes a scheme
for dividing the treasure. For example, she might propose to keep 31 gold coins for herself and
give the six remaining barbarians 3 coins each. However, being the barbarians they are, if the
majority vote against this scheme, then the rest of the barbarians kill the strongest. In this
case, the strongest of the remaining six barbarians proposing a way to divide the treasure,
risking death if more than half of the barbarians vote against him.

The process repeats in a similar fashion (strongest remaining barbarian proposes a way to
divide the hoard, barbarians vote, and the strongest remaining barbarian dies if they reject
his suggestion) until a division is accepted.

How should the strongest barbarian divide the hoard? You can assume that all barbarians
are greedy and care only about how much treasure they receive.

Note: If there are an even number of barbarians and a vote that is evenly split, the tie goes
to the proposing barbarian (the other half of the barbarians are weaker and don’t have the
strength to kill the strongest).

4. (extra credit problem) We discussed in lecture a reason why m is a lower bound for the
Hiking Problem. Show that 3m is a lower bound for the Hiking Problem.

5. (extra credit problem) In lab we argued that updating k ← 2k is more efficient than
k ← k + 1. However, why stop there? Would it be more efficient to increase k even more
rapidly? Consider the following algorithm for the Hiking Problem.

ExtremeHiking()

1 k = 2.
2 while you haven’t arrived at your friend:
3 hike k miles north
4 return to start
5 hike k miles south
6 return to start
7 k = k2.

Again, describe the distance traveled in Hiking as a function of the initial distance from your
friend in the worst case. Express your answer in big-Oh notation. How does this algorithm
compare to the algorithms we saw in class?

2


