
review classes of algorithms-
review def of big O-
proofs of big O-

selection sert○
mergesort○
big O analysis of each○

sorting-

outline

first test -- weeks 1 and 2, C++ but not bigO
(we only test you on things where you did the lab and got a grade back)
(the study guide auto-hides answers so you can check yourself)

what class grows proportionally to the size of the problem? linear 𝑂(𝑛)1.
what's the fastest class of algorithms? constant time 𝑂(1)2.
what's an example of a quadratic algorithm? selection sort, bubble sort, insertion sort 𝑂 𝑛3.
which class of algorithms is the slowest? factorial 𝑂(𝑛!)4.
what class do the fastest sorting algorithms fall into? 𝑂(𝑛 log 𝑛)5.

Review classes of algorithms

Definition of big-O
We say that 𝑓(𝑛) is 𝑂(𝑔(𝑛)) if there exist constants 𝑐 > 0 and 𝑛 ≥ 1 such that 𝑓(𝑛) ≤ 𝑐 ⋅ 𝑔(𝑛) for all 𝑛 ≥ 𝑛 .

Proofs

Example 1: Show that 𝑓(𝑛) = 𝑛 + 3𝑛 + 1 is 𝑂(𝑛).
We know 𝑛 > 0 as it's the size of the problem, and 𝑛 is an integer.
We also know 𝑛 ≤ 𝑛 and 3𝑛 ≤ 3𝑛 and 1 ≤ 𝑛 , so
𝑛 + 3𝑛 + 1 ≤ 𝑛 + 3𝑛 + 𝑛 = 5𝑛
… so as long as we choose a constant 𝑐 ≥ 5 and 𝑛 ≥ 1, we can say that 𝑓(𝑛) is 𝑂(𝑔(𝑛))
because 𝑛 + 3𝑛 + 1 ≤ 5𝑛 .

Example 2: Show that …

Example 3: Show that 𝑓(𝑛) = 4𝑛 − 5𝑛 + 6𝑛 − 7𝑛 + 8 is 𝑂(𝑛) assuming 𝑛 > 0.
We know 0 > −5𝑛 and 0 > −7𝑛 .
So 4𝑛 − 5𝑛 + 6𝑛 − 7𝑛 + 8 ≤ 4𝑛 − 0 + 6𝑛 − 0 + 8𝑛 = 18𝑛 .
So as long as 𝑐 ≥ 18 and 𝑛 ≥ 1, we know that 𝑓(𝑛) is 𝑂(𝑛).

Example 4: Is 𝑓(𝑛) = 4𝑛 .…
𝑂 𝑛 ? yes

𝑂(𝑛)? yes
𝑂 𝑛 ? yes

Remember that big O provides an upper bound, but the definition does not require it to be a tight upper bound.
Obviously we prefer tighter upper bounds because they give us a better sense of the algorithm's efficiency.
Example 5: suppose 𝑓(𝑛) = 𝑛 and 𝑔(𝑛) = 7𝑛 + 3𝑛, which of the following is the best answer:
[discussion about why we do this, is this good, generally we just say 𝑂(𝑛) and not anything weirder like
𝑂 7𝑛 + 4 .

Goal: take an unsorted array of elements and rearrange them such that they are in ascending order.

onscreen demo

./sortTest 1000 selectSort
output shows the last 10 elements as a sanity check for "did it sort correctly?"

time ./sortTest 1000 selectSort
takes .009s
triple it
takes .02s
10,000 took 0.1s
30,000 took 0.9s
so you have to sometimes pick a big enough input size to have the difference in runtime actually show.

example of a divide-and-conquer style algorithm (think: like binary search)•

base case, where no recursion is necessary○
recursive cases, where we use the same approach on smaller versions of the problem○

typically have recursive solutions•

conquer by putting separate results from recursion back together•

reminder: a recursive function is a function that calls itself

return // you're all done! that array is definitely sorted
if size < 2:

copy the first half of the array into a new array B
copy the second half of the array into a new array C
mergeSort(B,size/2)
mergeSort(C,size/2)

merge(B,C, array) // helper function merge takes two arrays and puts them back in sorted order in
the original array.

mergeSort(array, size):

merge function:

Mergesort

3.2 big-O and sorting, lecture 2
Thursday, September 15, 2022

 Lila lecture 22f Page 1

copy the first half of the array into a new array B
copy the second half of the array into a new array C
mergeSort(B,size/2)
mergeSort(C,size/2)

merge(B,C, array) // helper function merge takes two arrays and puts them back in sorted order in
the original array.

merge function:

i=0, j=0, k=0 // indices for A, B, and C, respectively

C[k++] = A[i++] // this uses the values k and i, then increments each of them
if A[i] ≤B[j]:

C[k++] = B[j++]
else

while i<sizeA and j<sizeB:

C[k++] = A[i++]
while i<sizeA: // to handle the leftover items if they are in A

C[k++] = B[j++]
while j<sizeB: // ditto

merge(A, sizeA, B, sizeB, C):

 Lila lecture 22f Page 2

 Lila lecture 22f Page 3

