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194 Chapter 5. Stacks, Queues, and Deques

5.1 Stacks

A stack is a container of objects that are inserted and removed according to the last-
in first-out (LIFO) principle. Objects can be inserted into a stack at any time, but
only the most recently inserted (that is, “last”) object can be removed at any time.
The name “stack” is derived from the metaphor of a stack of plates in a spring-
loaded, cafeteria plate dispenser. In this case, the fundamental operations involve
the “pushing” and “popping” of plates on the stack. When we need a new plate
from the dispenser, we “pop” the top plate off the stack, and when we add a plate,
we “push” it down on the stack to become the new top plate. Perhaps an even more
amusing metaphor would be a PEZ R© candy dispenser, which stores mint candies
in a spring-loaded container that “pops” out the top-most candy in the stack when
the top of the dispenser is lifted. (See Figure 5.1.) Stacks are a fundamental data
structure. They are used in many applications, including the following.

Example 5.1: Internet Web browsers store the addresses of recently visited sites
on a stack. Each time a user visits a new site, that site’s address is “pushed” onto the
stack of addresses. The browser then allows the user to “pop” back to previously
visited sites using the “back” button.

Example 5.2: Text editors usually provide an “undo” mechanism that cancels re-
cent editing operations and reverts to former states of a document. This undo oper-
ation can be accomplished by keeping text changes in a stack.

Figure 5.1: A schematic drawing of a PEZ R© dispenser; a physical implementation
of the stack ADT. (PEZ R© is a registered trademark of PEZ Candy, Inc.)
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5.1. Stacks 195

5.1.1 The Stack Abstract Data Type

Stacks are the simplest of all data structures, yet they are also among the most
important, since they are used in a host of different applications that include many
more sophisticated data structures. Formally, a stack is an abstract data type (ADT)
that supports the following operations:

push(e): Insert element e at the top of the stack.

pop(): Remove the top element from the stack; an error occurs
if the stack is empty.

top(): Return a reference to the top element on the stack, with-
out removing it; an error occurs if the stack is empty.

Additionally, let us also define the following supporting functions:

size(): Return the number of elements in the stack.

empty(): Return true if the stack is empty and false otherwise.

Example 5.3: The following table shows a series of stack operations and their
effects on an initially empty stack of integers.

Operation Output Stack Contents
push(5) – (5)
push(3) – (5,3)
pop() – (5)
push(7) – (5,7)
pop() – (5)
top() 5 (5)
pop() – ()
pop() “error” ()
top() “error” ()
empty() true ()
push(9) – (9)
push(7) – (9,7)
push(3) – (9,7,3)
push(5) – (9,7,3,5)
size() 4 (9,7,3,5)
pop() – (9,7,3)
push(8) – (9,7,3,8)
pop() – (9,7,3)
top() 3 (9,7,3)
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196 Chapter 5. Stacks, Queues, and Deques

5.1.2 The STL Stack

The Standard Template Library provides an implementation of a stack. The un-
derlying implementation is based on the STL vector class, which is presented in
Sections 1.5.5 and 6.1.4. In order to declare an object of type stack, it is neces-
sary to first include the definition file, which is called “stack.” As with the STL
vector, the class stack is part of the std namespace, so it is necessary either to use
“std::stack” or to provide a “using” statement. The stack class is templated with
the class of the individual elements. For example, the code fragment below declares
a stack of integers.

#include <stack>
using std::stack; // make stack accessible
stack<int> myStack; // a stack of integers

We refer to the type of individual elements as the stack’s base type. As with STL
vectors, an STL stack dynamically resizes itself as new elements are pushed on.

The STL stack class supports the same operators as our interface. Below, we
list the principal member functions. Let s be declared to be an STL vector, and let
e denote a single object whose type is the same as the base type of the stack. (For
example, s is a vector of integers, and e is an integer.)

size(): Return the number of elements in the stack.

empty(): Return true if the stack is empty and false otherwise.

push(e): Push e onto the top of the stack.

pop(): Pop the element at the top of the stack.

top(): Return a reference to the element at the top of the stack.
There is one significant difference between the STL implementation and our

own definitions of the stack operations. In the STL implementation, the result of
applying either of the operations top or pop to an empty stack is undefined. In
particular, no exception is thrown. Even though no exception is thrown, it may
very likely result in your program aborting. Thus, it is up to the programmer to be
sure that no such illegal accesses are attempted.

5.1.3 A C++ Stack Interface

Before discussing specific implementations of the stack, let us first consider how
to define an abstract data type for a stack. When defining an abstract data type,
our principal concern is specifying the Application Programming Interface (API),
or simply interface, which describes the names of the public members that the
ADT must support and how they are to be declared and used. An interface is not
a complete description of all the public members. For example, it does not include



i

i

“main” — 2011/1/13 — 9:10 — page 197 — #219
i

i

i

i

i

i

5.1. Stacks 197

the private data members. Rather, it is a list of members that any implementation
must provide. The C++ programming language does not provide a simple method
for defining interfaces, and therefore, the interface defined here is not an official
C++ class. It is offered principally for the purpose of illustration.

The informal interface for the stack ADT is given in Code Fragment 5.1. This
interface defines a class template. Recall from Section 2.3 that such a definition
implies that the base type of element being stored in the stack will be provided by
the user. In Code Fragment 5.1, this element type is indicated by E. For example,
E may be any fundamental type (such as int, char, bool, and double), any built-in
or user-defined class (such as string), or a pointer to any of these.

template <typename E>
class Stack { // an interface for a stack
public:

int size() const; // number of items in stack
bool empty() const; // is the stack empty?
const E& top() const throw(StackEmpty); // the top element
void push(const E& e); // push x onto the stack
void pop() throw(StackEmpty); // remove the top element
};

Code Fragment 5.1: An informal Stack interface (not a complete C++ class).

Observe that the member functions size, empty, and top are all declared to be
const, which informs the compiler that they do not alter the contents of the stack.
The member function top returns a constant reference to the top of the stack, which
means that its value may be read but not written.

Note that pop does not return the element that was popped. If the user wants to
know this value, it is necessary to perform a top operation first, and save the value.
The member function push takes a constant reference to an object of type E as its
argument. Recall from Section 1.4 that this is the most efficient way of passing
objects to a function.

An error condition occurs when calling either of the functions pop or top on an
empty stack. This is signaled by throwing an exception of type StackEmpty, which
is defined in Code Fragment 5.2.

// Exception thrown on performing top or pop of an empty stack.
class StackEmpty : public RuntimeException {
public:

StackEmpty(const string& err) : RuntimeException(err) {}
};

Code Fragment 5.2: Exception thrown by functions pop and top when called on an
empty stack. This class is derived from RuntimeException from Section 2.4.
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198 Chapter 5. Stacks, Queues, and Deques

5.1.4 A Simple Array-Based Stack Implementation

We can implement a stack by storing its elements in an array. Specifically, the stack
in this implementation consists of an N-element array S plus an integer variable t
that gives the index of the top element in array S. (See Figure 5.2.)

0 1 2 N−1t

S

Figure 5.2: Realization of a stack by means of an array S. The top element in the
stack is stored in the cell S[t].

Recalling that arrays in C++ start at index 0, we initialize t to −1, and use this
value for t to identify when the stack is empty. Likewise, we can use this variable
to determine the number of elements in a stack (t + 1). We also introduce a new
type of exception, called StackFull, to signal the error condition that arises if we
try to insert a new element and the array S is full. Exception StackFull is specific to
our implementation of a stack and is not defined in the stack ADT. Given this new
exception, we can then implement the stack ADT functions as described in Code
Fragment 5.3.

Algorithm size():

return t + 1
Algorithm empty():

return (t < 0)
Algorithm top():

if empty() then
throw StackEmpty exception

return S[t]
Algorithm push(e):

if size() = N then
throw StackFull exception

t← t + 1
S[t]← e

Algorithm pop():

if empty() then
throw StackEmpty exception

t← t−1
Code Fragment 5.3: Implementation of a stack by means of an array.

The correctness of the functions in the array-based implementation follows im-
mediately from the definition of the functions themselves. Table 5.1 shows the
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running times for member functions in a realization of a stack by an array. Each
of the stack functions in the array realization executes a constant number of state-
ments involving arithmetic operations, comparisons, and assignments. Thus, in this
implementation of the Stack ADT, each function runs in constant time, that is, they
each run in O(1) time.

Operation Time
size O(1)

empty O(1)

top O(1)

push O(1)

pop O(1)

Table 5.1: Performance of an array-based stack. The space usage is O(N), where N
is the array’s size. Note that the space usage is independent from the number n≤ N
of elements that are actually in the stack.

A C++ Implementation of a Stack

In this section, we present a concrete C++ implementation of the above pseudo-
code specification by means of a class, called ArrayStack. Our approach is to store
the elements of a stack in an array. To keep the code simple, we have omitted the
standard housekeeping utilities, such as a destructor, an assignment operator, and a
copy constructor. We leave their implementations as an exercise.

We begin by providing the ArrayStack class definition in Code Fragment 5.4.

template <typename E>
class ArrayStack {

enum { DEF CAPACITY = 100 }; // default stack capacity
public:

ArrayStack(int cap = DEF CAPACITY); // constructor from capacity
int size() const; // number of items in the stack
bool empty() const; // is the stack empty?
const E& top() const throw(StackEmpty); // get the top element
void push(const E& e) throw(StackFull); // push element onto stack
void pop() throw(StackEmpty); // pop the stack
// . . .housekeeping functions omitted

private: // member data
E* S; // array of stack elements
int capacity; // stack capacity
int t; // index of the top of the stack
};

Code Fragment 5.4: The class ArrayStack, which implements the Stack interface.
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200 Chapter 5. Stacks, Queues, and Deques

In addition to the member functions required by the interface, we also provide
a constructor, that is given the desired capacity of the stack as its only argument. If
no argument is given, the default value given by DEF CAPACITY is used. This is
an example of using default arguments in function calls. We use an enumeration
to define this default capacity value. This is the simplest way of defining symbolic
integer constants within a C++ class. Our class is templated with the element type,
denoted by E. The stack’s storage, denoted S, is a dynamically allocated array of
type E, that is, a pointer to E.

Next, we present the implementations of the ArrayStack member functions in
Code Fragment 5.5. The constructor allocates the array storage, whose size is set to
the default capacity. The members capacity and t are also set to their initial values.
In spite of the syntactical complexities of defining templated member functions in
C++, the remaining member functions are straightforward implementations of their
definitions in Code 5.3. Observe that functions top and pop first check that the
stack is not empty, and otherwise, they throw an exception. Similarly, push first
checks that the stack is not full, and otherwise, it throws an exception.

template <typename E> ArrayStack<E>::ArrayStack(int cap)
: S(new E[cap]), capacity(cap), t(−1) { } // constructor from capacity

template <typename E> int ArrayStack<E>::size() const
{ return (t + 1); } // number of items in the stack

template <typename E> bool ArrayStack<E>::empty() const
{ return (t < 0); } // is the stack empty?

template <typename E> // return top of stack
const E& ArrayStack<E>::top() const throw(StackEmpty) {

if (empty()) throw StackEmpty("Top of empty stack");
return S[t];
}

template <typename E> // push element onto the stack
void ArrayStack<E>::push(const E& e) throw(StackFull) {

if (size() == capacity) throw StackFull("Push to full stack");
S[++t] = e;
}

template <typename E> // pop the stack
void ArrayStack<E>::pop() throw(StackEmpty) {

if (empty()) throw StackEmpty("Pop from empty stack");
−−t;
}

Code Fragment 5.5: Implementations of the member functions of class ArrayStack
(excluding housekeeping functions).
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Example Output

In Code Fragment 5.6 below, we present an example of the use of our ArrayStack
class. To demonstrate the flexibility of our implementation, we show two stacks of
different base types. The instance A is a stack of integers of the default capacity
(100). The instance B is a stack of character strings of capacity 10.

ArrayStack<int> A; // A = [ ], size = 0
A.push(7); // A = [7*], size = 1
A.push(13); // A = [7, 13*], size = 2
cout << A.top() << endl; A.pop(); // A = [7*], outputs: 13
A.push(9); // A = [7, 9*], size = 2
cout << A.top() << endl; // A = [7, 9*], outputs: 9
cout << A.top() << endl; A.pop(); // A = [7*], outputs: 9
ArrayStack<string> B(10); // B = [ ], size = 0
B.push("Bob"); // B = [Bob*], size = 1
B.push("Alice"); // B = [Bob, Alice*], size = 2
cout << B.top() << endl; B.pop(); // B = [Bob*], outputs: Alice
B.push("Eve"); // B = [Bob, Eve*], size = 2

Code Fragment 5.6: An example of the use of the ArrayStack class. The contents
of the stack are shown in the comment following the operation. The top of the stack
is indicated by an asterisk (“*”).

Note that our implementation, while simple and efficient, could be enhanced
in a number of ways. For example, it assumes a fixed upper bound N on the ulti-
mate size of the stack. In Code Fragment 5.4, we chose the default capacity value
N = 100 more or less arbitrarily (although the user can set the capacity in the con-
structor). An application may actually need much less space than the given initial
size, and this would be wasteful of memory. Alternatively, an application may need
more space than this, in which case our stack implementation might “crash” if too
many elements are pushed onto the stack.

Fortunately, there are other implementations that do not impose an arbitrary size
limitation. One such method is to use the STL stack class, which was introduced
earlier in this chapter. The STL stack is also based on the STL vector class, and
it offers the advantage that it is automatically expanded when the stack overflows
its current storage limits. In practice, the STL stack would be the easiest and most
practical way to implement an array-based stack. Later in this chapter, we see other
methods that use space proportional to the actual size of the stack.

In instances where we have a good estimate on the number of items needing to
go in the stack, the array-based implementation is hard to beat from the perspective
of speed and simplicity. Stacks serve a vital role in a number of computing applica-
tions, so it is helpful to have a fast stack ADT implementation, such as the simple
array-based implementation.
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5.1.5 Implementing a Stack with a Generic Linked List

In this section, we show how to implement the stack ADT using a singly linked list.
Our approach is to use the generic singly linked list, called SLinkedList, which was
presented earlier in Section 3.2.4. The definition of our stack, called LinkedStack,
is presented in Code Fragment 5.7.

To avoid the syntactic messiness inherent in C++ templated classes, we have
chosen not to implement a fully generic templated class. Instead, we have opted to
define a type for the stack’s elements, called Elem. In this example, we define Elem
to be of type string. We leave the task of producing a truly generic implementation
as an exercise. (See Exercise R-5.7.)

typedef string Elem; // stack element type
class LinkedStack { // stack as a linked list
public:

LinkedStack(); // constructor
int size() const; // number of items in the stack
bool empty() const; // is the stack empty?
const Elem& top() const throw(StackEmpty); // the top element
void push(const Elem& e); // push element onto stack
void pop() throw(StackEmpty); // pop the stack

private: // member data
SLinkedList<Elem> S; // linked list of elements
int n; // number of elements
};

Code Fragment 5.7: The class LinkedStack, a linked list implementation of a stack.

The principal data member of the class is the generic linked list of type Elem,
called S. Since the SLinkedList class does not provide a member function size, we
store the current size in a member variable, n.

In Code Fragment 5.8, we present the implementations of the constructor and
the size and empty functions. Our constructor creates the initial stack and initial-
izes n to zero. We do not provide an explicit destructor, relying instead on the
SLinkedList destructor to deallocate the linked list S.

LinkedStack::LinkedStack()
: S(), n(0) { } // constructor

int LinkedStack::size() const
{ return n; } // number of items in the stack

bool LinkedStack::empty() const
{ return n == 0; } // is the stack empty?

Code Fragment 5.8: Constructor and size functions for the LinkedStack class.
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The definitions of the stack operations, top, push, and pop, are presented in
Code Fragment 5.9. Which side of the list, head or tail, should we chose for the top
of the stack? Since SLinkedList can insert and delete elements in constant time only
at the head, the head is clearly the better choice. Therefore, the member function
top returns S.front(). The functions push and pop invoke the functions addFront
and removeFront, respectively, and update the number of elements.

// get the top element
const Elem& LinkedStack::top() const throw(StackEmpty) {

if (empty()) throw StackEmpty("Top of empty stack");
return S.front();
}
void LinkedStack::push(const Elem& e) { // push element onto stack

++n;
S.addFront(e);
}

// pop the stack
void LinkedStack::pop() throw(StackEmpty) {

if (empty()) throw StackEmpty("Pop from empty stack");
−−n;
S.removeFront();
}

Code Fragment 5.9: Principal operations for the LinkedStack class.

5.1.6 Reversing a Vector Using a Stack

We can use a stack to reverse the elements in a vector, thereby producing a nonre-
cursive algorithm for the array-reversal problem introduced in Section 3.5.1. The
basic idea is to push all the elements of the vector in order into a stack and then
fill the vector back up again by popping the elements off of the stack. In Code
Fragment 5.10, we give a C++ implementation of this algorithm.

template <typename E>
void reverse(vector<E>& V) { // reverse a vector

ArrayStack<E> S(V.size());
for (int i = 0; i < V.size(); i++) // push elements onto stack

S.push(V[i]);
for (int i = 0; i < V.size(); i++) { // pop them in reverse order

V[i] = S.top(); S.pop();
}
}

Code Fragment 5.10: A generic function that uses a stack to reverse a vector.

For example, if the input vector to function reverse contained the five strings
[Jack, Kate, Hurley, Jin, Michael], then on returning from the function, the vector
would contain [Michael, Jin, Hurley, Kate, Jack].
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5.1.7 Matching Parentheses and HTML Tags

In this section, we explore two related applications of stacks. The first is matching
parentheses and grouping symbols in arithmetic expressions. Arithmetic expres-
sions can contain various pairs of grouping symbols, such as

• Parentheses: “(” and “)”
• Braces: “{” and “}”
• Brackets: “[” and “]”
• Floor function symbols: “⌊” and “⌋”
• Ceiling function symbols: “⌈” and “⌉,”

and each opening symbol must match with its corresponding closing symbol. For
example, a left bracket symbol (“[”) must match with a corresponding right bracket
(“]”) as in the following expression:

• Correct: ()(()){([()])}
• Correct: ((()(()){([()])}))
• Incorrect: )(()){([()])}
• Incorrect: ({[ ])}
• Incorrect: (

We leave the precise definition of matching of grouping symbols to Exercise R-5.8.

An Algorithm for Parentheses Matching

An important problem in processing arithmetic expressions is to make sure their
grouping symbols match up correctly. We can use a stack S to perform the matching
of grouping symbols in an arithmetic expression with a single left-to-right scan.
The algorithm tests that left and right symbols match up and also that the left and
right symbols are both of the same type.

Suppose we are given a sequence X = x0x1x2 . . .xn−1, where each xi is a token
that can be a grouping symbol, a variable name, an arithmetic operator, or a number.
The basic idea behind checking that the grouping symbols in S match correctly, is
to process the tokens in X in order. Each time we encounter an opening symbol, we
push that symbol onto S, and each time we encounter a closing symbol, we pop the
top symbol from the stack S (assuming S is not empty) and we check that these two
symbols are of corresponding types. (For example, if the symbol “(” was pushed,
the symbol “)” should be its match.) If the stack is empty after we have processed
the whole sequence, then the symbols in X match.

Assuming that the push and pop operations are implemented to run in constant
time, this algorithm runs in O(n) total time. We give a pseudo-code description of
this algorithm in Code Fragment 5.11.
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Algorithm ParenMatch(X ,n):
Input: An array X of n tokens, each of which is either a grouping symbol, a

variable, an arithmetic operator, or a number
Output: true if and only if all the grouping symbols in X match

Let S be an empty stack
for i← 0 to n−1 do

if X [i] is an opening grouping symbol then
S.push(X [i])

else if X [i] is a closing grouping symbol then
if S.empty() then

return false {nothing to match with}
if S.top() does not match the type of X [i] then

return false {wrong type}
S.pop()

if S.empty() then
return true {every symbol matched}

else
return false {some symbols were never matched}

Code Fragment 5.11: Algorithm for matching grouping symbols in an arithmetic
expression.

Matching Tags in an HTML Document

Another application in which matching is important is in the validation of HTML
documents. HTML is the standard format for hyperlinked documents on the In-
ternet. In an HTML document, portions of text are delimited by HTML tags. A
simple opening HTML tag has the form “<name>” and the corresponding closing
tag has the form “</name>.” Commonly used HTML tags include:

• body: document body
• h1: section header
• center: center justify
• p: paragraph
• ol: numbered (ordered) list
• li: list item

We show a sample HTML document and a possible rendering in Figure 5.3. Our
goal is to write a program to check that the tags properly match.

A very similar approach to that given in Code Fragment 5.11 can be used to
match the tags in an HTML document. We push each opening tag on a stack, and
when we encounter a closing tag, we pop the stack and verify that the two tags
match.
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<body>

<center>

<h1> The Little Boat </h1>

</center>

<p> The storm tossed the little

boat like a cheap sneaker in an

old washing machine. The three

drunken fishermen were used to

such treatment, of course, but

not the tree salesman, who even

as a stowaway now felt that he

had overpaid for the voyage. </p>

<ol>

<li> Will the salesman die? </li>

<li> What color is the boat? </li>

<li> And what about Naomi? </li>

</ol>

</body>

The Little Boat
The storm tossed the little boat
like a cheap sneaker in an old
washing machine. The three
drunken fishermen were used to
such treatment, of course, but not
the tree salesman, who even as
a stowaway now felt that he had
overpaid for the voyage.

1. Will the salesman die?
2. What color is the boat?
3. And what about Naomi?

(a) (b)

Figure 5.3: HTML tags: (a) an HTML document; (b) its rendering.

In Code Fragments 5.12 through 5.14, we present a C++ program for matching
tags in an HTML document read from the standard input stream. For simplicity,
we assume that all tags are syntactically well formed.

First, the procedure getHtmlTags reads the input line by line, extracts all the
tags as strings, and stores them in a vector, which it returns.

vector<string> getHtmlTags() { // store tags in a vector
vector<string> tags; // vector of html tags
while (cin) { // read until end of file

string line;
getline(cin, line); // input a full line of text
int pos = 0; // current scan position
int ts = line.find("<", pos); // possible tag start
while (ts != string::npos) { // repeat until end of string

int te = line.find(">", ts+1); // scan for tag end
tags.push back(line.substr(ts, te−ts+1)); // append tag to the vector
pos = te + 1; // advance our position
ts = line.find("<", pos);
}
}
return tags; // return vector of tags
}

Code Fragment 5.12: Get a vector of HTML tags from the input, and store them in
a vector of strings.
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Given the example shown in Figure 5.3(a), this procedure would return the
following vector:

<body>, <center>, <h1>, </h1>, </center>, . . . , </body>
In Code Fragment 5.12, we employ a variable pos, which maintains the current
position in the input line. We use the built-in string member function find to locate
the first occurrence of “<” that follows the current position. (Recall the discussion
of string operations from Section 1.5.5.) This tag start position is stored in the
variable ts. We then find the next occurrence of “>,” and store this tag end position
in te. The tag itself consists of the substring of length te− ts+1 starting at position
ts. This is pushed onto the vector tags. We then update the current position to be
te+ 1 and repeat until we find no further occurrences of “<.” This occurs when the
find function returns the special value string::npos.

Next, the procedure isHtmlMatched, shown in Code Fragments 5.12, imple-
ments the process of matching the tags.

// check for matching tags
bool isHtmlMatched(const vector<string>& tags) {

LinkedStack S; // stack for opening tags
typedef vector<string>::const iterator Iter;// iterator type

// iterate through vector
for (Iter p = tags.begin(); p != tags.end(); ++p) {

if (p−>at(1) != ’/’) // opening tag?
S.push(*p); // push it on the stack

else { // else must be closing tag
if (S.empty()) return false; // nothing to match - failure
string open = S.top().substr(1); // opening tag excluding ’<’
string close = p−>substr(2); // closing tag excluding ’</’
if (open.compare(close) != 0) return false; // fail to match
else S.pop(); // pop matched element
}
}
if (S.empty()) return true; // everything matched - good
else return false; // some unmatched - bad
}

Code Fragment 5.13: Check whether HTML tags stored in the vector tags are
matched.

We create a stack, called S, in which we store the opening tags. We then iterate
through the vector of tags. If the second character tag string is not “/,” then this is
an opening tag, and it is pushed onto the stack. Otherwise, it is a closing tag, and
we check that it matches the tag on top of the stack. To compare the opening and
closing tags, we use the string substr member function to strip the first character off
the opening tag (thus removing the “<”) and the first two characters off the closing
tag (thus removing the “</”). We check that these two substrings are equal, using
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the built-in string function compare. When the loop terminates, we know that every
closing tag matches its corresponding opening tag. To finish the job, we need to
check that there were no unmatched opening tags. We test this by checking that the
stack is now empty.

Finally, the main program is presented in Code Fragment 5.14. It invokes the
function getHtmlTags to read the tags, and then it passes these to isHtmlMatched
to test them.

int main() { // main HTML tester
if (isHtmlMatched(getHtmlTags())) // get tags and test them

cout << "The input file is a matched HTML document." << endl;
else

cout << "The input file is not a matched HTML document." << endl;
}

Code Fragment 5.14: The main program to test whether the input file consists of
matching HTML tags.

5.2 Queues

Another fundamental data structure is the queue, which is a close relative of the
stack. A queue is a container of elements that are inserted and removed according
to the first-in first-out (FIFO) principle. Elements can be inserted in a queue at any
time, but only the element that has been in the queue the longest can be removed at
any time. We usually say that elements enter the queue at the rear and are removed
from the front. The metaphor for this terminology is a line of people waiting to get
on an amusement park ride. People enter at the rear of the line and get on the ride
from the front of the line.

5.2.1 The Queue Abstract Data Type

Formally, the queue abstract data type defines a container that keeps elements in
a sequence, where element access and deletion are restricted to the first element
in the sequence, which is called the front of the queue, and element insertion is
restricted to the end of the sequence, which is called the rear of the queue. This
restriction enforces the rule that items are inserted and deleted in a queue according
to the first-in first-out (FIFO) principle.

The queue abstract data type (ADT) supports the following operations:

enqueue(e): Insert element e at the rear of the queue.

dequeue(): Remove element at the front of the queue; an error occurs
if the queue is empty.
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front(): Return, but do not remove, a reference to the front ele-
ment in the queue; an error occurs if the queue is empty.

The queue ADT also includes the following supporting member functions:

size(): Return the number of elements in the queue.

empty(): Return true if the queue is empty and false otherwise.

We illustrate the operations in the queue ADT in the following example.

Example 5.4: The following table shows a series of queue operations and their
effects on an initially empty queue, Q, of integers.

Operation Output front← Q← rear

enqueue(5) – (5)
enqueue(3) – (5,3)
front() 5 (5,3)
size() 2 (5,3)
dequeue() – (3)
enqueue(7) – (3,7)
dequeue() – (7)
front() 7 (7)
dequeue() – ()
dequeue() “error” ()
empty() true ()

5.2.2 The STL Queue

The Standard Template Library provides an implementation of a queue. As with
the STL stack, the underlying implementation is based on the STL vector class
(Sections 1.5.5 and 6.1.4). In order to declare an object of type queue, it is neces-
sary to first include the definition file, which is called “queue.” As with the STL
vector, the class queue is part of the std namespace, so it is necessary either to use
“std::queue” or to provide an appropriate “using” statement. The queue class is
templated with the base type of the individual elements. For example, the code
fragment below declares a queue of floats.

#include <queue>
using std::queue; // make queue accessible
queue<float> myQueue; // a queue of floats

As with instances of STL vectors and stacks, an STL queue dynamically resizes
itself as new elements are added.

The STL queue supports roughly the same operators as our interface, but the
syntax and semantics are slightly different. Below, we list the principal member
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functions. Let q be declared to be an STL queue, and let e denote a single object
whose type is the same as the base type of the queue. (For example, q is a queue of
floats, and e is a float.)

size(): Return the number of elements in the queue.

empty(): Return true if the queue is empty and false otherwise.

push(e): Enqueue e at the rear of the queue.

pop(): Dequeue the element at the front of the queue.

front(): Return a reference to the element at the queue’s front.

back(): Return a reference to the element at the queue’s rear.

Unlike our queue interface, the STL queue provides access to both the front
and back of the queue. Similar to the STL stack, the result of applying any of
the operations front, back, or pop to an empty STL queue is undefined. Unlike
our interface, no exception is thrown, but it may very likely result in the program
aborting. It is up to the programmer to be sure that no such illegal accesses are
attempted.

5.2.3 A C++ Queue Interface

Our interface for the queue ADT is given in Code Fragment 5.15. As with the stack
ADT, the class is templated. The queue’s base element type E is provided by the
user.

template <typename E>
class Queue { // an interface for a queue
public:

int size() const; // number of items in queue
bool empty() const; // is the queue empty?
const E& front() const throw(QueueEmpty); // the front element
void enqueue (const E& e); // enqueue element at rear
void dequeue() throw(QueueEmpty); // dequeue element at front
};
Code Fragment 5.15: An informal Queue interface (not a complete C++ class).

Note that the size and empty functions have the same meaning as their coun-
terparts in the Stack ADT. These two member functions and front are known as
accessor functions, for they return a value and do not change the contents of the
data structure. Also note the use of the exception QueueEmpty to indicate the error
state of an empty queue.

The member functions size, empty, and front are all declared to be const,
which informs the compiler that they do not alter the contents of the queue. Note
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that the member function front returns a constant reference to the top of the queue.

An error condition occurs when calling either of the functions front or dequeue
on an empty queue. This is signaled by throwing an exception QueueEmpty, which
is defined in Code Fragment 5.16.

class QueueEmpty : public RuntimeException {
public:

QueueEmpty(const string& err) : RuntimeException(err) { }
};

Code Fragment 5.16: Exception thrown by functions front or dequeue when called
on an empty queue. This class is derived from RuntimeException from Section 2.4.

5.2.4 A Simple Array-Based Implementation

We present a simple realization of a queue by means of an array, Q, with capacity
N, for storing its elements. The main issue with this implementation is deciding
how to keep track of the front and rear of the queue.

One possibility is to adapt the approach we used for the stack implementation.
In particular, let Q[0] be the front of the queue and have the queue grow from
there. This is not an efficient solution, however, for it requires that we move all
the elements forward one array cell each time we perform a dequeue operation.
Such an implementation would therefore require Θ(n) time to perform the dequeue
function, where n is the current number of elements in the queue. If we want to
achieve constant time for each queue function, we need a different approach.

Using an Array in a Circular Way

To avoid moving objects once they are placed in Q, we define three variables, f , r,
n, which have the following meanings:

• f is the index of the cell of Q storing the front of the queue. If the queue is
nonempty, this is the index of the element to be removed by dequeue.

• r is an index of the cell of Q following the rear of the queue. If the queue is
not full, this is the index where the element is inserted by enqueue.

• n is the current number of elements in the queue.

Initially, we set n = 0 and f = r = 0, indicating an empty queue. When we
dequeue an element from the front of the queue, we decrement n and increment f
to the next cell in Q. Likewise, when we enqueue an element, we increment r and
increment n. This allows us to implement the enqueue and dequeue functions in
constant time
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Nonetheless, there is still a problem with this approach. Consider, for example,
what happens if we repeatedly enqueue and dequeue a single element N different
times. We would have f = r = N. If we were then to try to insert the element
just one more time, we would get an array-out-of-bounds error, even though there
is plenty of room in the queue in this case. To avoid this problem and be able to
utilize all of the array Q, we let the f and r indices “wrap around” the end of Q.
That is, we now view Q as a “circular array” that goes from Q[0] to Q[N− 1] and
then immediately back to Q[0] again. (See Figure 5.4.)

0 1 2 f N−1r 0 1 2 r N−1f

(a) (b)

Figure 5.4: Using array Q in a circular fashion: (a) the “normal” configuration with
f ≤ r; (b) the “wrapped around” configuration with r < f . The cells storing queue
elements are shaded.

Using the Modulo Operator to Implement a Circular Array

Implementing this circular view of Q is actually pretty easy. Each time we in-
crement f or r, we simply need to compute this increment as “( f + 1) mod N”
or “(r + 1) mod N,” respectively, where the operator “mod” is the modulo oper-
ator. This operator is computed for a positive number by taking the remainder
after an integral division. For example, 48 divided by 5 is 9 with remainder 3,
so 48 mod 5 = 3. Specifically, given integers x and y, such that x ≥ 0 and y > 0,
x mod y is the unique integer 0 ≤ r < y such that x = qy + r, for some integer q.
Recall that C++ uses “%” to denote the modulo operator.

We present our implementation in Code Fragment 5.17. Note that we have
introduced a new exception, called QueueFull, to signal that no more elements can
be inserted in the queue. Our implementation of a queue by means of an array is
similar to that of a stack, and is left as an exercise.

The array-based queue implementation is quite efficient. All of the operations
of the queue ADT are performed in O(1) time. The space usage is O(N), where N
is the size of the array, determined at the time the queue is created. Note that the
space usage is independent from the number n < N of elements that are actually in
the queue.

As with the array-based stack implementation, the only real disadvantage of
the array-based queue implementation is that we artificially set the capacity of the
queue to be some number N. In a real application, we may actually need more
or less queue capacity than this, but if we have a good estimate of the number of
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Algorithm size():

return n
Algorithm empty():

return (n = 0)
Algorithm front():

if empty() then
throw QueueEmpty exception

return Q[ f ]
Algorithm dequeue():

if empty() then
throw QueueEmpty exception

f ← ( f + 1) mod N
n = n−1

Algorithm enqueue(e):

if size() = N then
throw QueueFull exception

Q[r]← e
r← (r + 1) mod N
n = n+ 1

Code Fragment 5.17: Implementation of a queue using a circular array.

elements that will be in the queue at the same time, then the array-based imple-
mentation is quite efficient. One such possible application of a queue is dynamic
memory allocation in C++, which is discussed in Chapter 14.

5.2.5 Implementing a Queue with a Circularly Linked List

In this section, we present a C++ implementation of the queue ADT using a linked
representation. Recall that we delete from the head of the queue and insert at the
rear. Thus, unlike our linked stack of Code Fragment 5.7, we cannot use our singly
linked list class, since it provides efficient access only to one side of the list. In-
stead, our approach is to use the circularly linked list, called CircleList, which was
introduced earlier in Section 3.4.1.

Recall that CircleList maintains a pointer, called the cursor, which points to one
node of the list. Also recall that CircleList provides two member functions, back
and front. The function back returns a reference to the element to which the cursor
points, and the function front returns a reference to the element that immediately
follows it in the circular list. In order to implement a queue, the element referenced
by back will be the rear of the queue and the element referenced by front will be the
front. (Why would it not work to reverse matters using the back of the circular list
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as the front of the queue and the front of the circular list as the rear of the queue?)

Also recall that CircleList supports the following modifier functions. The func-
tion add inserts a new node just after the cursor, the function remove removes the
node immediately following the cursor, and the function advance moves the cursor
forward to the next node of the circular list.

In order to implement the queue operation enqueue, we first invoke the function
add, which inserts a new element just after the cursor, that is, just after the rear
of the queue. We then invoke advance, which advances the cursor to this new
element, thus making the new node the rear of the queue. The process is illustrated
in Figure 5.5.

LAX MSP ATL

(front) (rear)
cursor

(a)

LAX MSP ATL BOS

(front) (rear)
cursor

(b)

LAX MSP ATL BOS

(front) (rear)
cursor

(c)

Figure 5.5: Enqueueing “BOS” into a queue represented as a circularly linked list:
(a) before the operation; (b) after adding the new node; (c) after advancing the
cursor.

In order to implement the queue operation dequeue, we invoke the function
remove, thus removing the node just after the cursor, that is, the front of the queue.
The process is illustrated in Figure 5.6.

The class structure for the resulting class, called LinkedQueue, is shown in
Code Fragment 5.18. To avoid the syntactic messiness inherent in C++ templated
classes, we have chosen not to implement a fully generic templated class. Instead,
we have opted to define a type for the queue’s elements, called Elem. In this ex-
ample, we define Elem to be of type string. The queue is stored in the circular list
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LAX MSP ATL BOS

(front) (rear)
cursor

(a)

MSP ATL BOS

(front) (rear)
cursor

LAX

(b)

Figure 5.6: Dequeueing an element (in this case “LAX”) from the front queue rep-
resented as a circularly linked list: (a) before the operation; (b) after removing the
node immediately following the cursor.

data structure C. In order to support the size function (which CircleList does not
provide), we also maintain the queue size in the member n.

typedef string Elem; // queue element type
class LinkedQueue { // queue as doubly linked list
public:

LinkedQueue(); // constructor
int size() const; // number of items in the queue
bool empty() const; // is the queue empty?
const Elem& front() const throw(QueueEmpty); // the front element
void enqueue(const Elem& e); // enqueue element at rear
void dequeue() throw(QueueEmpty); // dequeue element at front

private: // member data
CircleList C; // circular list of elements
int n; // number of elements
};

Code Fragment 5.18: The class LinkedQueue, an implementation of a queue based
on a circularly linked list.

In Code Fragment 5.19, we present the implementations of the constructor and
the basic accessor functions, size, empty, and front. Our constructor creates the
initial queue and initializes n to zero. We do not provide an explicit destructor,
relying instead on the destructor provided by CircleList. Observe that the func-
tion front throws an exception if an attempt is made to access the first element of
an empty queue. Otherwise, it returns the element referenced by the front of the
circular list, which, by our convention, is also the front element of the queue.
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LinkedQueue::LinkedQueue() // constructor
: C(), n(0) { }

int LinkedQueue::size() const // number of items in the queue
{ return n; }

bool LinkedQueue::empty() const // is the queue empty?
{ return n == 0; }

// get the front element
const Elem& LinkedQueue::front() const throw(QueueEmpty) {

if (empty())
throw QueueEmpty("front of empty queue");

return C.front(); // list front is queue front
}

Code Fragment 5.19: Constructor and accessor functions for the LinkedQueue class.

The definition of the queue operations, enqueue and dequeue are presented in
Code Fragment 5.20. Recall that enqueuing involves invoking the add function to
insert the new item immediately following the cursor and then advancing the cursor.
Before dequeuing, we check whether the queue is empty, and, if so, we throw an
exception. Otherwise, dequeuing involves removing the element that immediately
follows the cursor. In either case, we update the number of elements in the queue.

// enqueue element at rear
void LinkedQueue::enqueue(const Elem& e) {

C.add(e); // insert after cursor
C.advance(); // . . .and advance
n++;
}

// dequeue element at front
void LinkedQueue::dequeue() throw(QueueEmpty) {

if (empty())
throw QueueEmpty("dequeue of empty queue");

C.remove(); // remove from list front
n−−;
}

Code Fragment 5.20: The enqueue and dequeue functions for LinkedQueue.

Observe that, all the operations of the queue ADT are implemented in O(1)
time. Therefore this implementation is quite efficient. Unlike the array-based im-
plementation, by expanding and contracting dynamically, this implementation uses
space proportional to the number of elements that are present in the queue at any
time.
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5.3 Double-Ended Queues

Consider now a queue-like data structure that supports insertion and deletion at both
the front and the rear of the queue. Such an extension of a queue is called a double-
ended queue, or deque, which is usually pronounced “deck” to avoid confusion
with the dequeue function of the regular queue ADT, which is pronounced like
the abbreviation “D.Q.” An easy way to remember the “deck” pronunciation is to
observe that a deque is like a deck of cards in the hands of a crooked card dealer—it
is possible to deal off both the top and the bottom.

5.3.1 The Deque Abstract Data Type

The functions of the deque ADT are as follows, where D denotes the deque:

insertFront(e): Insert a new element e at the beginning of the deque.

insertBack(e): Insert a new element e at the end of the deque.

eraseFront(): Remove the first element of the deque; an error occurs if
the deque is empty.

eraseBack(): Remove the last element of the deque; an error occurs if
the deque is empty.

Additionally, the deque includes the following support functions:

front(): Return the first element of the deque; an error occurs if
the deque is empty.

back(): Return the last element of the deque; an error occurs if
the deque is empty.

size(): Return the number of elements of the deque.

empty(): Return true if the deque is empty and false otherwise.

Example 5.5: The following example shows a series of operations and their ef-
fects on an initially empty deque, D, of integers.

Operation Output D
insertFront(3) – (3)
insertFront(5) – (5,3)
front() 5 (5,3)
eraseFront() – (3)
insertBack(7) – (3,7)
back() 7 (3,7)
eraseFront() – (7)
eraseBack() – ()
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5.3.2 The STL Deque

As with the stack and queue, the Standard Template Library provides an implemen-
tation of a deque. The underlying implementation is based on the STL vector class
(Sections 1.5.5 and 6.1.4). The pattern of usage is similar to that of the STL stack
and STL queue. First, we need to include the definition file “deque.” Since it is a
member of the std namespace, we need to either preface each usage “std::deque”
or provide an appropriate “using” statement. The deque class is templated with
the base type of the individual elements. For example, the code fragment below
declares a deque of strings.

#include <deque>
using std::deque; // make deque accessible
deque<string> myDeque; // a deque of strings

As with STL stacks and queues, an STL deque dynamically resizes itself as new
elements are added.

With minor differences, the STL deque class supports the same operators as
our interface. Here is a list of the principal operations.

size(): Return the number of elements in the deque.

empty(): Return true if the deque is empty and false otherwise.

push front(e): Insert e at the beginning the deque.

push back(e): Insert e at the end of the deque.

pop front(): Remove the first element of the deque.

pop back(): Remove the last element of the deque.

front(): Return a reference to the deque’s first element.

back(): Return a reference to the deque’s last element.

Similar to STL stacks and queues, the result of applying any of the operations
front, back, push front, or push back to an empty STL queue is undefined. Thus,
no exception is thrown, but the program may abort.

5.3.3 Implementing a Deque with a Doubly Linked List

In this section, we show how to implement the deque ADT using a linked repre-
sentation. As with the queue, a deque supports efficient access at both ends of the
list, so our implementation is based on the use of a doubly linked list. Again, we
use the doubly linked list class, called DLinkedList, which was presented earlier in
Section 3.3.3. We place the front of the deque at the head of the linked list and the
rear of the queue at the tail. An illustration is provided in Figure 5.7.
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Figure 5.7: A doubly linked list with sentinels, header and trailer. The front of our
deque is stored just after the header (“JFK”), and the back of our deque is stored
just before the trailer (“SFO”).

The definition of the resulting class, called LinkedDeque, is shown in Code
Fragment 5.21. The deque is stored in the data member D. In order to support
the size function, we also maintain the queue size in the member n. As in some
of our earlier implementations, we avoid the syntactic messiness inherent in C++
templated classes, and instead use just a type definition to define the deque’s base
element type.

typedef string Elem; // deque element type
class LinkedDeque { // deque as doubly linked list
public:

LinkedDeque(); // constructor
int size() const; // number of items in the deque
bool empty() const; // is the deque empty?
const Elem& front() const throw(DequeEmpty); // the first element
const Elem& back() const throw(DequeEmpty); // the last element
void insertFront(const Elem& e); // insert new first element
void insertBack(const Elem& e); // insert new last element
void removeFront() throw(DequeEmpty); // remove first element
void removeBack() throw(DequeEmpty); // remove last element

private: // member data
DLinkedList D; // linked list of elements
int n; // number of elements
};

Code Fragment 5.21: The class structure for class LinkedDeque.

We have not bothered to provide an explicit destructor, because the DLinkedList
class provides its own destructor, which is automatically invoked when our Linked-
Deque structure is destroyed.

Most of the member functions for the LinkedDeque class are straightforward
generalizations of the corresponding functions of the LinkedQueue class, so we
have omitted them. In Code Fragment 5.22, we present the implementations of
the member functions for performing insertions and removals of elements from the
deque. Observe that, in each case, we simply invoke the appropriate operation from
the underlying DLinkedList object.
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// insert new first element
void LinkedDeque::insertFront(const Elem& e) {

D.addFront(e);
n++;
}

// insert new last element
void LinkedDeque::insertBack(const Elem& e) {

D.addBack(e);
n++;
}

// remove first element
void LinkedDeque::removeFront() throw(DequeEmpty) {

if (empty())
throw DequeEmpty("removeFront of empty deque");

D.removeFront();
n−−;
}

// remove last element
void LinkedDeque::removeBack() throw(DequeEmpty) {

if (empty())
throw DequeEmpty("removeBack of empty deque");

D.removeBack();
n−−;
}

Code Fragment 5.22: The insertion and removal functions for LinkedDeque.

Table 5.2 shows the running times of functions in a realization of a deque by a
doubly linked list. Note that every function of the deque ADT runs in O(1) time.

Operation Time
size O(1)

empty O(1)

front, back O(1)

insertFront, insertBack O(1)

eraseFront, eraseBack O(1)

Table 5.2: Performance of a deque realized by a doubly linked list. The space usage
is O(n), where n is number of elements in the deque.

5.3.4 Adapters and the Adapter Design Pattern

An inspection of code fragments of Sections 5.1.5, 5.2.5, and 5.3.3, reveals a com-
mon pattern. In each case, we have taken an existing data structure and adapted it
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to be used for a special purpose. For example, in Section 5.3.3, we showed how
the DLinkedList class of Section 3.3.3 could be adapted to implement a deque. Ex-
cept for the additional feature of keeping track of the number of elements, we have
simply mapped each deque operation (such as insertFront) to the corresponding
operation of DLinkedList (such as the addFront).

An adapter (also called a wrapper) is a data structure, for example, a class in
C++, that translates one interface to another. You can think of an adapter as the
software analogue to electric power plug adapters, which are often needed when
you want to plug your electric appliances into electric wall sockets in different
countries.

As an example of adaptation, observe that it is possible to implement the stack
ADT by means of a deque data structure. That is, we can translate each stack
operation to a functionally equivalent deque operation. Such a mapping is presented
in Table 5.3.

Stack Method Deque Implementation
size() size()
empty() empty()
top() front()
push(o) insertFront(o)
pop() eraseFront()

Table 5.3: Implementing a stack with a deque.

Note that, because of the deque’s symmetry, performing insertions and re-
movals from the rear of the deque would have been equally efficient.

Likewise, we can develop the correspondences for the queue ADT, as shown in
Table 5.4.

Queue Method Deque Implementation
size() size()
empty() empty()
front() front()
enqueue(e) insertBack(e)
dequeue() eraseFront()

Table 5.4: Implementing a queue with a deque.

As a more concrete example of the adapter design pattern, consider the code
fragment shown in Code Fragment 5.23. In this code fragment, we present a class
DequeStack, which implements the stack ADT. It’s implementation is based on
translating each stack operation to the corresponding operation on a LinkedDeque,
which was introduced in Section 5.3.3.
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typedef string Elem; // element type
class DequeStack { // stack as a deque
public:

DequeStack(); // constructor
int size() const; // number of elements
bool empty() const; // is the stack empty?
const Elem& top() const throw(StackEmpty); // the top element
void push(const Elem& e); // push element onto stack
void pop() throw(StackEmpty); // pop the stack

private:
LinkedDeque D; // deque of elements
};

Code Fragment 5.23: Implementation of the Stack interface by means of a deque.

The implementations of the various member functions are presented in Code
Fragment 5.24. In each case, we translate some stack operation into the corre-
sponding deque operation.

DequeStack::DequeStack() // constructor
: D() { }

// number of elements
int DequeStack::size() const
{ return D.size(); }

// is the stack empty?
bool DequeStack::empty() const
{ return D.empty(); }

// the top element
const Elem& DequeStack::top() const throw(StackEmpty) {

if (empty())
throw StackEmpty("top of empty stack");

return D.front();
}

// push element onto stack
void DequeStack::push(const Elem& e)
{ D.insertFront(e); }

// pop the stack
void DequeStack::pop() throw(StackEmpty)
{

if (empty())
throw StackEmpty("pop of empty stack");

D.removeFront();
}

Code Fragment 5.24: Implementation of the Stack interface by means of a deque.
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5.4 Exercises

For help with exercises, please visit the web site, www.wiley.com/college/goodrich.

Reinforcement

R-5.1 Describe how to implement a capacity-limited stack, which uses the func-
tions of a capacity-limited deque to perform the functions of the stack
ADT in ways that do not throw exceptions when we attempt to perform a
push on a full stack or a pop on an empty stack.

R-5.2 Describe how to implement a capacity-limited queue, which uses the func-
tions of a capacity-limited deque to perform the functions of the queue
ADT in ways that do not throw exceptions when we attempt to perform a
enqueue on a full queue or a dequeue on an empty queue.

R-5.3 Suppose an initially empty stack S has performed a total of 25 push oper-
ations, 12 top operations, and 10 pop operations, 3 of which generated a
StackEmpty exception that was caught and ignored. What is the current
size of S?

R-5.4 If we implemented the stack S from the previous problem with an array, as
described in this chapter, then what is the current value of the top member
variable?

R-5.5 Describe the output of the following series of stack operations: push(5),
push(3), pop(), push(2), push(8), pop(), pop(), push(9), push(1), pop(),
push(7), push(6), pop(), pop(), push(4), pop(), pop().

R-5.6 Give a recursive function for removing all the elements in a stack.

R-5.7 Modify the stack ADT implementation of Section 5.1.5 as a fully generic
class (through the use of templates).

R-5.8 Give a precise and complete definition of the concept of matching for
grouping symbols in an arithmetic expression.

R-5.9 Describe the output for the following sequence of queue operations:

enqueue(5), enqueue(3), dequeue(), enqueue(2), enqueue(8), dequeue(),
dequeue(), enqueue(9), enqueue(1), dequeue(), enqueue(7), enqueue(6),
dequeue(), dequeue(), enqueue(4), dequeue(), dequeue().

R-5.10 Describe the output for the following sequence of deque operations:

insertFront(3), insertBack(8), insertBack(9), insertFront(5), removeFront(),
eraseBack(), first(), insertBack(7), removeFront(), last(), eraseBack().

www.wiley.com/college/goodrich
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R-5.11 Suppose you have a deque D containing the numbers (1,2,3,4,5,6,7,8),
in this order. Suppose further that you have an initially empty queue
Q. Give a pseudo-code description of a function that uses only D and
Q (and no other variables or objects) and results in D storing the elements
(1,2,3,5,4,6,7,8), in this order.

R-5.12 Repeat the previous problem using the deque D and an initially empty
stack S.

Creativity

C-5.1 Explain how you can implement all the functions of the deque ADT using
two stacks.

C-5.2 Suppose you have a stack S containing n elements and a queue Q that is
initially empty. Describe how you can use Q to scan S to see if it contains a
certain element x, with the additional constraint that your algorithm must
return the elements back to S in their original order. You may not use
an array or linked list—only S and Q and a constant number of reference
variables.

C-5.3 Give a pseudo-code description for an array-based implementation of the
deque ADT. What is the running time for each operation?

C-5.4 Suppose Alice has picked three distinct integers and placed them into a
stack S in random order. Write a short, straight-line piece of pseudo-code
(with no loops or recursion) that uses only one comparison and only one
variable x, yet guarantees with probability 2/3 that at the end of this code
the variable x will store the largest of Alice’s three integers. Argue why
your method is correct.

C-5.5 Describe how to implement the stack ADT using two queues. What is the
running time of the push and pop functions in this case?

C-5.6 Suppose we have an n×n two-dimensional array A that we want to use to
store integers, but we don’t want to spend the O(n2) work to initialize it to
all 0’s, because we already know that we are only going to use up to n of
these cells in our algorithm, which itself runs in O(n) time (not counting
the time to initialize A). Show how to use an array-based stack S storing
(i, j,k) integer triples to allow us to use the array A without initializing
it and still implement our algorithm in O(n) time, even though the initial
values in the cells of A might be total garbage.

C-5.7 Describe a nonrecursive algorithm for enumerating all permutations of the
numbers {1,2, . . . ,n}.

C-5.8 Postfix notation is an unambiguous way of writing an arithmetic expres-
sion without parentheses. It is defined so that if “(exp1) ◦ (exp2)” is a
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normal fully parenthesized expression whose operation is “◦”, then the
postfix version of this is “pexp1 pexp2◦”, where pexp1 is the postfix ver-
sion of exp1 and pexp2 is the postfix version of exp2. The postfix version
of a single number or variable is just that number or variable. So, for ex-
ample, the postfix version of “((5 + 2) ∗ (8− 3))/4” is “5 2 + 8 3 − ∗
4 /”. Describe a nonrecursive way of evaluating an expression in postfix
notation.

C-5.9 Suppose you have two nonempty stacks S and T and a deque D. Describe
how to use D so that S contains all the elements of T below all of its
original elements, with both sets of elements still in their original order.

C-5.10 Alice has three array-based stacks, A, B, and C, such that A has capacity
100, B has capacity 5, and C has capacity 3. Initially, A is full, and B and C
are empty. Unfortunately, the person who programmed the class for these
stacks made the push and pop functions private. The only function Alice
can use is a static function, transfer(S,T ), which transfers (by iteratively
applying the private pop and push functions) elements from stack S to
stack T until either S becomes empty or T becomes full. So, for example,
starting from our initial configuration and performing transfer(A,C) re-
sults in A now holding 97 elements and C holding 3. Describe a sequence
of transfer operations that starts from the initial configuration and results
in B holding 4 elements at the end.

C-5.11 Show how to use a stack S and a queue Q to generate all possible subsets
of an n-element set T nonrecursively.

Projects

P-5.1 Give an implementation of the deque ADT using an array, so that each of
the update functions run in O(1) time.

P-5.2 Design an ADT for a two-color, double-stack ADT that consists of two
stacks—one “red” and one “blue”—and has as its operations color-coded
versions of the regular stack ADT operations. For example, this ADT
should allow for both a red push operation and a blue push operation.
Give an efficient implementation of this ADT using a single array whose
capacity is set at some value N that is assumed to always be larger than
the sizes of the red and blue stacks combined.

P-5.3 Implement the stack ADT in a fully generic manner (through the use of
templates) by means of a singly linked list. (Give your implementation
“from scratch,” without the use of any classes from the Standard Template
Library or data structures presented earlier in this book.)

P-5.4 Implement the stack ADT in a fully generic manner using the STL vector
class.
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P-5.5 Implement the queue ADT in a fully generic manner using a dynamically
allocated C++ array.

P-5.6 Implement the queue ADT with a singly linked list.
P-5.7 Implement the deque ADT with an array used in a circular fashion.
P-5.8 Implement the deque ADT with a doubly linked list.
P-5.9 Implement a capacity-limited version of the deque ADT based on an ar-

ray used in a circular fashion, similar to queue implementation of Sec-
tion 5.2.4.

P-5.10 Implement the Stack and Queue interfaces with a unique class that is de-
rived from class LinkedDeque (Code Fragment 5.21).

P-5.11 When a share of common stock of some company is sold, the capital
gain (or, sometimes, loss) is the difference between the share’s selling
price and the price originally paid to buy it. This rule is easy to under-
stand for a single share, but if we sell multiple shares of stock bought
over a long period of time, then we must identify the shares actually be-
ing sold. A standard accounting principle for identifying which shares of
a stock were sold in such a case is to use a FIFO protocol—the shares
sold are the ones that have been held the longest (indeed, this is the de-
fault method built into several personal finance software packages). For
example, suppose we buy 100 shares at $20 each on day 1, 20 shares at
$24 on day 2, 200 shares at $36 on day 3, and then sell 150 shares on day
4 at $30 each. Then applying the FIFO protocol means that of the 150
shares sold, 100 were bought on day 1, 20 were bought on day 2, and 30
were bought on day 3. The capital gain in this case would therefore be
100 ·10+ 20 ·6+ 30 · (−6), or $940. Write a program that takes as input
a sequence of transactions of the form “buy x share(s) at $y each”
or “sell x share(s) at $y each,” assuming that the transactions oc-
cur on consecutive days and the values x and y are integers. Given this
input sequence, the output should be the total capital gain (or loss) for the
entire sequence, using the FIFO protocol to identify shares.

P-5.12 Implement a program that can input an expression in postfix notation (see
Exercise C-5.8) and output its value.

Chapter Notes

We were introduced to the approach of defining data structures first in terms of their ADTs
and then in terms of concrete implementations by the classic books by Aho, Hopcroft, and
Ullman [4, 5], which incidentally is where we first saw a problem similar to Exercise C-
5.6. Exercise C-5.10 is similar to interview questions said to be from a well-known software
company. For further study of abstract data types, see Liskov and Guttag [68], Cardelli and
Wegner [19], or Demurjian [27].
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