
CS91T Week 7 In-Lab Exercises

March 16, 2023

The learning goals of lab exercises this week is to build up comfort and intuition of how an algorithm
can use randomness, and to work with a CS application of randomness.

1. Coarse Bounds for the Harmonic Number. The n-th Harmonic number Hn is defined
as the sum of the recipricols of the first n natural numbers:

Hn =
n∑

k=1

1

k
.

Similar to factorials, very tight approximations are known for Hn: Hn = ln(n) + O(1). In
this exercise you will develop a quick and easy way of getting coarse bounds.

(a) Show that Hn ≤ log(n). To show this inequality, let n = 2k − 1 for some k.

� First, write out the terms of the Harmonic number: (I’ve done this for you)

Hn = 1 +
1

2
+

1

3
+ · · ·+ 1

2k
.

� Second, take each term, and ”round the term up” to the nearest power of 2. For
example, 1

5 ≤ 1
4 ,

1
61 ≤ 1

32 , and
1

1025 ≤ 1
1024 . Note also that 1

2 ≤ 1
2 .

Give an upper bound for Hn by rounding up each term.

Hn ≤ .

� Next, add up terms with the same value. For example, there should be two terms
in the sum of value 1

2 , so replace 1
2 + 1

2 with 2 · 1
2 = 1.

Hn ≤ .

� Finally, add up terms in the above sum to get Hn ≤ log(n).

(b) Use similar calculations to the one above to show that Hn ≥ 1 + 1
2 log(n).

2. Coupon Collectors. Suppose we have the following balls-and-bins problem. There are n
bins, and a number of balls, and as usual, each ball is independently and uniformly assigned
a bin. This time, our task is to keep throwing balls into bins until each bin has at least one
ball. How many balls do we need until all bins are occupied? This is known in the
CS literature as the Coupon Collectors Problem.

1



(a) Let X be the number of balls thrown before all buckets are occupied. Show that

E[X] = nHn .

Hint: For 1 ≤ i ≤ n, let Xi denote the number of balls thrown while there are exactly
i− 1 occupied bins.

(b) Given E[X] = nHn, we can use Markov’s inequality to show that with high probability,
the number of balls needed before all balls are occupied is O(n log(n)). However, with a
little more effort, it’s possible to get a tighter bound.

Let t = nHn + cn for some constant c. Show that

Pr[X > t] ≤ e−c .

Hint: for 1 ≤ i ≤ n, let BADi be the event that none of the first t balls end up in bin
Bi. Let BAD = ∪iBADi. Show that Pr[BAD] ≤ e−c using the Union Bound.

3. BucketSort.

Suppose you have a List L of n = 2m random items. Each item in L is uniformly distributed
over the universe U = {0, 1, . . . , 2k} for some k ≥ m. For this exercise you will design a Las
Vegas algorithm A that sorts L in expected O(n) time.

For each z ∈ {0, 1}m, define a bucket Bz. Algorithm A works as follows:

� First, scan through L. For each 1 ≤ i ≤ n, look at the m most significant digits of L[i],
and place L[i] into the bucket Bz whose most significant digits match z. (Assume you
can place each item into a bucket in O(1) timesteps.)

� Second, sort items in each bucket Bz using a any O(n2)-time sorting algortihm you like.

� Finally, iterate through all buckets Bz in increasing order, and copy the items from each
Bz back into L.

(a) Argue that A correctly sorts L.

(b) Let Xz denote the number of elements of L that end up in Bz. Argue that E[X2
z ] = O(1).

(c) Next, conclude that the total expected runtime of step 2 is O(n)

4. Asymptotic Analysis Proofs.

(a) Let f(n) = 3n3 − 2n2 and g(n) = 20n2. Prove that f(n) = Ω(g(n)).

(b) Prove that f = O(g) if and only if g = Ω(f).

5. Comparing Functions Asymptotically. Examine each of the following pairs of functions,
and provide the tightest asymptotic comparison possible. For example, if f = Θ(g), say so.
If f = O(g) but not f = Θ(g), say f = O(g).

(a) f1(n) = n2, g1(n) = 2n log(n).

(b) f2(n) =
10n

log(n) , g2(n) =
n

log(n) − n log(e).

(c) f3(n) = n
√

log log(n)
log(n) , g3(n) = n.

2


