CS91T Lab Assignment 5

This homework is a one-week assignment, due at 11:59PM on Wednesday, April 12. This is a one-week, ten point assignment. Write your solution using LATEX. Submit this homework in a file named hw5.tex using github.

This is a partnered assignment, but you may choose to work on this solo, assuming no students in the class need a partner. You should primarily be discussing this assignment with your partner. It's ok to discuss approaches at a high level. However, you should not reveal specific details of a solution, nor should you show your written solution to anyone else.

The main **learning goals** of this assignment are to gain practice working with the Second Moment Method.

1. (Shoup, exercise 8.26b.) The *covariance* of real-valued random variables X, Y, written Cov[X, Y], is defined as:

$$\operatorname{Cov}[X,Y] = E[XY] - E[X]E[Y] \; .$$

For real-valued random variables X_1, \ldots, X_n , show that $\operatorname{Var}[\sum_i X_i] = \sum_i \operatorname{Var}[X_i] + \sum_{i \neq j} \operatorname{Cov}[X, Y]$.

2. Threshold theorem for Connectivity. In class and lab, we sketched out details for proving

Theorem 1. Let $p = \frac{c \ln(n)}{n}$ for some constant c > 0, and let $G \sim G_{n,p}$. If c < 1, then with high probability G is not connected.

In particular, we defined $A = \sum_i A_i$, where each A_i is the indicator variable for the event that vertex *i* is *isolated*. We saw that $E[A_i] \approx n^{-c}$, $E[A] \approx n^{1-c}$, and using the Second Moment Method,

$$\Pr[A=0] \le \frac{\operatorname{Var}[A]}{E[A]^2}$$

- (a) Compute $VAR[A_i]$.
- (b) Using Exercise 1, show that $\operatorname{Var}[A] \leq 2n^{1-c}$.
- (c) Using the Second Moment Method, conclude that, for large enough n,

$$\Pr[A=0] \le \frac{8}{n^{1-c}} = O\left(\frac{1}{n^{1-c}}\right)$$

3. (extra challenge problem). Prove upper bound on the connectivity theshold theoremm:

Theorem 2. Let $p = \frac{c \ln(n)}{n}$ for some constant c > 0, and let $G \sim G_{n,p}$. If c > 1, then $\Pr[G \text{ is NOT connected}] \leq \frac{1}{poly(n)}$.