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FIGURE 2.6
The two parse trees for the string a+axa in grammar G

This grammar doesn’t capture the usual precedence relations and so may
group the + before the x or vice versa. In contrast, grammar G, generates
exactly the same language, but every generated string has a unique parse tree.
Hence G4 is unambiguous, whereas Gy, is ambiguous.

Grammar G (page 103) is another example of an ambiguous grammar. The
sentence the girl touches the boy with the flower has two different
derivations. In Exercise 2.8 you are asked to give the two parse trees and observe
their correspondence with the two different ways to read that sentence.

Now we formalize the notion of ambiguity. When we say that a grammar
generates a string ambiguously, we mean that the string has two different parse
trees, not two different derivations. Two derivations may differ merely in the
order in which they replace variables yet not in their overall structure. To con-
centrate on structure, we define a type of derivation that replaces variables in a
fixed order. A derivation of a string w in a grammar G is a leftmost derivation if
at every step the leftmost remaining variable is the one replaced. The derivation
preceding Definition 2.2 (page 104) is a leftmost derivation.

DEFINITION 2,7

A string w is derived ambiguously in context-free grammar G if
it has two or more different leftmost derivations. Grammar & is
ambiguous if it generates some string ambiguously.

Sometimes when we have an ambiguous grammar we can find an unambigu-
ous grammar that generates the same language. Some context-free languages,
however, can be generated only by ambiguous grammars. Such languages are
called inberently ambiguous. Problem 2.29 asks you to prove that the language
{a'v/c¥| i = j or j = k} is inherently ambiguous.

CHOMSKY NORMAL FORM

When working with context-free grammars, it is often convenient to have them
in simplified form. One of the simplest and most useful forms is called the
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Chomsky normal form. Chomsky normal form is useful in giving algorithms
tor working with context-free grammars, as we do in Chapters 4 and 7.

DEFINITION 2.8

A context-free grammar is in Chomsky normal form if every rule is
of the form

A — BC
A—a

where @ is any terminal and A, B, and C are any variables—except
that B and C' may not be the start variable. In addition, we permit
the rule S — &, where S is the start variable.

THEOREM 2.9

Any context-free language is generated by a context-free grammar in Chomsky
normal form.

PROOF IDEA We can convert any grammar G into Chomsky normal form.
The conversion has several stages wherein rules that violate the conditions are
replaced with equivalent ones that are satisfactory. First, we add a new start
variable. Then, we eliminate all e-rules of the form A — . We also eliminate
all unit rules of the form A — B. In both cases we patch up the grammar to be
sure that it still generates the same language. Finally, we convert the remaining
rules into the proper form.

PROOF First, we add a new start variable Sy and the rule Sy — S, where
S was the original start variable. This change guarantees that the start variable
doesn’t occur on the right-hand side of a rule. ’

Second, we take care of all e-rules. We remove an e-rule A — &, where 4
is not the start variable. Then for each occurrence of an A on the right-hand
side of a rule, we add a new rule with that occurrence deleted. In other words,
if R — wAv is a rule in which w and v are strings of variables and terminals, we
add rule R — ww. We do so for each occurrence of an A, so the rule R — wAvAw
causes us to add R — wwAw, R — wAvw, and R — uvw. If we have the rule
R — A, we add R — € unless we had previously removed the rule R — . We
repeat these steps until we eliminate all e-rules not involving the stare variable.

Third, we handle all unit rules. We remove a unit rule A — B, Then,
whenever a rule 3 — w appears, we add the rule A — w unless this was a unit
rule previously removed. As before, w is a string of variables and terminals. We
repeat these steps until we eliminate all unit rules.

Finally, we convert all remaining rules into the proper form. We replace each
rule A — wyug - - uy, where k > 3 and each wu; is a variable or terminal symbol,




with the rules A — u1 A1, A1 — ugAs, Ay —> uzdsa, ..., and Ap_9 — up_1up.
The A;’s are new variables. We replace any terminal u; in the preceding rule(s)
with the new variable U; and add the rule U; — w;.

EXAMPLE 2.10

Let G¢ be the following CFG and convert it to Chomsky normal form by using
the conversion procedure just given. The series of grammars presented illus-
trates the steps in the conversion. Rules shown in bold have just been added.
Rules shown in gray have just been removed.

1. The original CFG Gg is shown on the left. The result of applying the first
step to make a new start variable appears on the right.

So — 8
S — ASA|aB ;_}ASAMB
A—=B|S A5 B|S
B—-ble Boble

2. Remove e-rules B — ¢, shown on the left, and A — €, shown on the right.

So—)S S()—>S

S — ASA|aB|a S — ASA|aB|a|SA|AS|S
A— B|S|e A— B|S|e

B—bvle B—b

3a. Remove unit rules S — S, shown on the left, and Sy — S, shown on the
right.

So — S So— S| ASA|aB|a|SA| AS
S — ASA|aB|a|SA|AS|S S — ASA|aB|a|SA|AS
A—-B|S A—B|S

B—=b B—>b

3b. Remove unitrules A - Band A — S.

So —+ ASA|aB|a|SA|AS Sy — ASA|aBla|SA|AS

S —+ ASA|aB|a|SA| AS S — ASA|aB|a|SA|AS
A—-B|S|b A— S|b|ASA|aB|a|SA|AS
B—=b B—>b

4. Convert the remaining rules into the proper form by adding additional vari-
ables and rules. The final grammar in Chomsky normal form is equivalent to Gé.
(Actually the procedure given in Theorem 2.9 produces several variables U; and
several rules U; — a. We simplified the resulting grammar by using a single
variable U and rule U — a.)

So — AA; |UB|a|SA| AS
S — AA, |UB|a|SA| AS
A b|AA, |UB|a|SA|AS
Al—)SA

U—a

B—>b
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PUSHDOWN AUTOMATA

In this section we introduce a new type of computational model called pushdown
automata. These automata are like nondeterministic finite automata but have an
extra component called a stack. The stack provides additional memory beyond
the finite amount available in the control. The stack allows pushdown automata
to recognize some nonregular languages.

Pushdown automata are equivalent in power to context-free grammars. This
equivalence is useful because it gives us two options for proving that a language is
context free. We can give either a context-free grammar generating it or a push-
down automaton recognizing it. Certain languages are more easily described in
terms of generators, whereas others are more easily described by recognizers.

The following figure is a schematic representation of a finite automaton. The
control represents the states and transition function, the tape contains the in-
put string, and the arrow represents the input head, pointing at the next input
symbol to be read.
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Schematic of a finite automaton




