
l08 cHAprER z / coNTEXT-FREE LANGuAGES

(EXPR)

FIGURE 2.6
The two parse trees for the string a+axa in gramrnar G5

This gra''nar cloes''t capture the us'al precedence relatio.s and so may
group the * before the x or vice versa. fn contrast, granìmâr G4 generates
exactly the same language, but every generated string has a unique pârse tree.
Hence Ga is unarnbiguous, whereas G¡; is :rmbiguous.

Grarnmar G2 (page 103) is another exarnple of an ambiguous grammar, ilhe
sentence the girl touches the boy with the f lourer has two clifferent
derivations. In Exercise 2.8 vou are asked to give the rwo parse trees ancl observe
their corresponclence with the rwo diffèrent wâys to read that selltence.

Now we fo'nalize the notion of ambiguiry. when we sây that a gram'rar
generates a string arnbiguously, we lnean that the string has two cliffèrent parse
trees, lÌot two clifTerent clerivations. Jwo clerivations llìay diff'er rnerely in the
orcler ir-r which they replace variables yet not in their overall strucrlrre. 'lò con-
centrate on structure, we clefine a type of clerivation that rcplaces variables in ¿t

fixed orcler. A clerivation of a string rrr in a grammar G is t leftm,ost cleriaøtion if
at every step the leftmost rernaining variable is the one replaced. The derivation
prececling Definition 2 .2 (page 104) is ¿r lefrnrost derivation.

DEFINITION 2.7

A string ro is derivecl ømbiguously in contexr-free gramrnar G if
it has two or more different leftrnost derivations. Grarnmar G is
øm.bigaous if it generates solre string zrrnbiguotrsly.

Sometimes when we have an ambiguous grâr1l1r1:ìr we cân find an unarnbigu-
ous grammar that generates the sarne language. Some corltext-free languages,
however, can be generatecl o.ly by ambig*o's gralnma.s. such la'guages are
called inherently ømbiguoøs. Problern 2.29 asks you ro prove that the language
{atUicÀ¡ i : .j or .j : k::} is inhere¡tly arnbiguous.

CHOMSKY NORMAL FORM

When working with context-free grammars, it is ofien convenient to have then"r
in simplifiecl fonn. (Jne of the simplest ancl most useftil fornrs is callecl the

2,1 CONTEXT.FREE GRAMMARS I 09

Chomsþ normal form. Chornsþ norrnal f-orm is useftil in giving algorithrns
for working with context-free grarnrn¿trs, as we do in Chapters 4 and 7.

DEFINITION 2.8

A context-free grarnmar is ín Chomsky normøl form if every rule is
of the fonn

A-+ßC
A -+ ct,

where o is any terminal and ,4, ß, and C are any variables-except
that B and C nÌay not be the start variable. In acldition, we permit
the rule S -+ e, where ,9 is the start variable.

THEOREM 2.9

A.ny context-free language is generatecl by a context-free grammar in Chomsky
normal form.

PRooF IDEA We can convert arry grammar G into Chomsþ normal form.
The conversion has several stages wherein rules that violate the conclitions are
replacecl with equivalent ones that are sâtisfactory. First, we add a new start
variable. Then, we eliminate ilI e-r"ules of the form A -+ e. We also eliminate
all unit rules of the form A -+ B. In both cases we patch up the grammar to be
sure that it still generates the same language. Finally, we convert the remaining
rules into the proper form.

PRooF First, we add a new start variable Sir and the rule Ss -+ ,9, where
,9 was the original start vari¿rble. This change guarantees that the st¿rt variable
doesn't occllr on the right-hand side of a rule.

Seconcl, we take care of all e-rules. We remove an e-rule A ) e, where A
is not the start variable. f'hen for each occurrelÌce of an ,4 on the rig'ht-har-rcl
side of a rule, we acld a new rule with that occurrence deletecl. In other words,
1f R. -+ rr,,4'¿r is a rule in wl-rich'¿¿ and u are strings of variables ancl terminals, we
add rule R, -+ tnt . We do so for each lcctu"rctzce of an A, so the rule R. -+ ttAu Atu
causes us to add R, ) rt,uAru, R. -+ 'uAuru, and -R -+'uit)'tr). If we have the rule
R. -+ A, we aclcl R. - + e unless we hacl previouslv renroved the rule Ã -+ e. We
repeat these steps until we elimin¿rte all e-rules not involving the start variable.

Tlrird, we hanclle all unit rules. We rernove a unit rule A -+ B. Then,
wlrenever a rule B + ?¿ appeârs, we acld the rule A -+ tt unless this was a unit
rule previotrsly removed. As before, 'ir, is a string of variablcs ancl terminals. We
repeât these steps until we elirninate all unit rules.

Finally, we convert all remaining rules into the proper f-orm. We replace each
rule A -+ 1t,tu,2. . .1¿À,, where À > 3 and each t¿ is a variable or tenninal symbol,

(EXPrì) (EXPrì)(EXPrì) (r,lxPrì)

(rtxPR)(EXPR)

+

(EXPR)

adXa aa

(EXPR)

I
a +

.-L

Ð
l1¿-

.l



with the rules ,4, -) u1A1, A1 -t u2A2, A2 -) usA3,. . . , and At-z -+ utr-Luk.
The A¿'s are new variables. W-e replace any terminal u¿ in the preceding rule(s)
with the new variable U¿ and add the ruleU¿ -+ u¿.

EXAMPLE 2.IO

Let G6 be the following CFG and convert it to Chomsþ normal form by using
the conversion procedure just given. The series of grammars presented illus-
trates the steps in the conversion. Rules shown in bold have just been added.
Rules shown in gray have just been removed.

1. The original CFG G6 is shown on the left. The result of appþing the first
step to make a new start variable appears on the right.

,90 --+ S
S -+ ASAIaB
A --+ BIS
B-+ble

2, Remove e-rules B -+ e, shown on the left, and A -+ e, shown on the right.

,90 -+ .9 ,90 -+ ,S

S -+ ASA laBla S -+ ASAI aBlalSAlASlS
A-+ BlSle A-+ BlSle
B-+ule B-+b

3a, Remove unit rules ,S + S, shown on the left, and .96 -+ ,S, shown on the
righr

^90 -+ ^9
S -+ ASAI aB I a I S,4 l,4s I s
A-+ BIS
B-+t

3b. Remove unit rules A -+ B and ,4 -+ 
^9.

Ss -+ ASA laBlalSAlAS Ss -+ ASAI aB lalSAlAS
S -+ ASA laBlalSAlAS S -+ ASA laB lalSAlAS
,4 -+ BlSlb A-+ S lblA,s,A la,BlalSAlASB-+b B-+b

S -+ ASAIaB
A-+ BIS
B -+ ule

^90 
-+ S'l ASA la,B la I SAI AS

S -+ ASA laBlalSAlAS
A-+ BIS
B -+a

4. Convert the remaining rules into the proper form by adding additional vari-
ables and rules. The final grammar in Chomsþ normal form is equivalent to G6.
(Actually the procedure given in Theorem 2.9 produces several variables U¿ and
several rules [/¿ -+ a. We simplified the resulting grâmmar by using a single
variable U and rule U -+ a.)

So -+ AAt IUB I al SAI AS
S -+ AAt IUB I al SAI AS
A-+alAArlUBlalSAlAS

At -+ SA
U-+a
B-+b

2.2 ì t:',:;,::r't i.; i.r ì :.1 lì ,t ,t i, i,; !,r '' r'! r'i 1, ì, i, t,'rr ti ir ìt:i irr'

PUSHDOWN AUTOMATA

In this section \¡/e introduce a new type of computational model called pashdawn
ø.atorna.tø, These âutomata are like nondeterministic finite automata but have an

extra component called a støcþ. The stack provides additional memory beyond
the finite amount available in the control. The stack allows pushdown automata
to recognize some nonregular languages.

Pushdown âutomata are equivalent in power to context-free grammars. This
equivalence is useful because it gives us two options for proving that a language is

context free. We can give either a context-free grammar generating it or a push-
down automaton recognizing it, Certain languages are more easily described in
terms of generators, whereas others are more easily described by recognizers.

The following figure is a schematic representation of a finite automaton. The
control represents the states and transition function, the tape contains the in-
put string, and the arrow represents the input head, pointing at the next input
si'mbol to be read.

bba

stâte
control

a rnput

FIGURE 2.II
Schematic of a finite automaton


