
29O cHAprER 7 / TIMs coMpLExrry

executed, n > A. If æ12 > g/, then ø mod y < y < rf2 andø drops by at least
haff. If r I 2 < g, then r mod U : r - y < r I 2 and ø drops by at least half.

The values of r and gr are exchanged every time stage 3 is executed, so each
of the original values of r and g are reduced by at least half every other time
through the loop. Thus, the maximum number of times that stages 2 and 3 are
executed is the lesser of 2Iog2r and2\ogza. These logarithms are proportional
to the lengths of the representâtions, giving the number of stages executed as

O(n). Each stage of ,Ð uses only polynomial time, so the total running time is
poþomial.

The final example of a poþomial time algorithm shows that every conrext-
free language is decidable in poþomial time.

THEOREM 7.I6
Every context-free language is a member of P

PRooF IDEA In Theorem 4.9, we proved that every CFL is decidable. To
do so, we gave an algorithm for each CFL that decides it. If that algorithm runs
in poþomial time, the current theorem follows as a corollary. Let's recall that
algorithm and find out whether it runs quickly enough.

Let tr be a CFL generated by CFG G that is in Chomsþ normal form. From
Problem 2.26, any derivation of a string w has 2n - 1 steps, where n is the length
of u., because G is in Chomsþ normal form. The decider for -L works by trying
all possible derivations wi¡h 2n - 1 steps when its input is a string of length n. If
any ofthese is a derivation oftu, the decider accepts; ifnot, it rejects.

A quick analysis of this algorithm shows that it doesn't run in polynomial
time. The number of derivations with k steps may be exponentiaT in k, so this
algorithm may require exponential time.

To get a polynomial time algorithm, we introduce a powerful technique called
dynørnic progrømrnìng. llhis technique uses the accumulation of information
about smaller subproblems to solve larger problems. We record the solution to
any subproblem so that we need to solve it only once. We do so by making a

table of all subproblems and entering their solutions systematically as we find
them.

In this case, we consider the subproblems of determining whether each vari-
able in G generates each substring of w. The algorithm enters the solution to
this subproblem in

^n
n x n tafl/re. For z (j, the (i, j)th entry of the table con-

tains the collection of variables that generate the substriîg wiw¿+r. . .tu¡. For
i. > j, the table entries are unused.

The algorithm fills in the table entries for each substring of tr. First it fills
in the entries for the substrings of length 1, then those of length 2, and so on.

7.2 THE cLASs e 291

It uses the entries for the shorter lengths to assist in determining the entries for
the longer lengths.

For example, suppose that the algorithm has already determined which vari-
ables generate all substrings up to length k. To determine whether a variable A
generâtes a particular substring of length k+ 1, the algorithm splits that substring
into fwo nonempty pieces in the k possible ways. For each split, the algorithm
examines each rule A -+ BC to determine whether B generates the first piece

and C generâtes the second piece, using table entries previously computed. If
both B and C generate the respective pieces, ,4 generates the substring and so

is added to the associated table entry. The algorithm starts the process with the
strings of length 1 by examining the table for the rules A -+ b.

pRooF The following algorithm D implements the proof idea. Let G be

a CFG in Chomsþ normal form generating the CFL L. Assume that ,9 is the
start variable. (Recall that the empty string is handled specially in a Chomsþ
normal form grammar. The algorithm handles the special case in which u) : e

in stage 1.) Comments appear inside double brackets.

D : "On input r-u : 't:rr' ' ,'u)ni

1. Fortr : e, if,S -+ e is arule, accept; else, reject. [Tr.r : e case]

2. Fori : I to n: I examine each substring of length 1]

3. For each variable A:
4. Tèst whether A -+ b is a rule, where b : 'tt¿.

5. If so, place A in table(i,, i,).

6. For I : 2 to n: I I is the length of the substringl

7. For i : 1,ton - I +Ii Iz is thestartposition ofthesubstring]

8. Let j:i+l - l. [jistheendpositionof thesubstring]

9. For k : i. to j - l: I k is the split position]
10. For each rule A a BC:
11. If table(i,,k) contains B and table(k + 1,i) contains

C, put Aintable(i, j).
12. If

^9
is in table(l,n), øccept; else, reject."

Now we analyze D. Each stage is easily implemented to run in poþomial
time. Stages 4 and 5 run at most nu times, where 'u is the number of variables in
G and is a fixed constânt independent of n; hence these stages run O(n) times'
Stage 6 rlrns ât most n times. Each time stage 6 runs, stage 7 runs at most ?¿

times. Each time stage 7 runs, stages 8 and 9 run at most n times. Each time
stage 9 runs, stage l0 runs r times, where r is the number of rules of G and

is another fixed constant. Thus stage 11, the inner loop of the algorithm, runs

O(nS) times. Summing the total shows that D executes O(n3) stages.

I

