
CS46 Lab 9
Lab problems are an opportunity for discussion and trying many different solutions. They are
not counted towards your grade, and you do not have to submit your solutions. The
purpose of these lab problems is to get more comfortable with reasoning and writing about Turing
machines, decidability, and recognizability.

Note: There is more than 90 minutes of exercises on this lab. Do not feel obligated to solve
these exercises in a linear fashion. Work on the problems that are most interesting to your group.

1. Prove the following theorem.

Theorem. A language is decidable if and only if it is Turing-recognizable and co-Turing-
recognizable.

2. Let LTM = {〈M〉|M is an encoding of a Turing machine}.

� Show that LTM is decidable.

� Replace ”Turing machine” with any of DFA, NFA, CFG, PDA. Show that the problem
remains decidable.

3. Useless variables. Given a grammar G, we say that a variable V ∈ G is “useless” if there
is no string w for which a possible derivation of w contains the variable V . Formulate the
problem of finding grammars containing useless variables as a language and show that this
language is decidable.

4. Infinite languages. Last week we saw that the following language was decidable:

INFINITEDFA = {〈A〉 | A is a DFA and L(A) is an infinite language}

(See solved problem 4.10 in the book for a clever way of making this argument.)

(a) Show that INFINITECFG is decidable, where:

INFINITECFG = {〈G〉 | G is a context-free grammar and L(G) is an infinite language}

(b) Show that INFINITETM is not decidable, where:

INFINITETM = {〈M〉 | M is a Turing machine and L(M) is an infinite language}

5. Classifying languages. For each of the following languages, is the language decidable?
Turing-recognizable? co-Turing-recognizable?

Provided an argument for your answers. (Give the deciders/recognizers that you claim exist,
and show why they work; if they do not exist, then prove why not.)

(a) ETM = {〈M〉 | L(M) = ∅}
(b) HUNDREDTM = {〈M,w〉 | M never moves its head past the 100th tape square during

its computation on w}

1



6. In class we saw a proof that ATM is undecidable. How does this proof use the fact that we’re
working with Turing Machines?

� Suppose we wanted to mimic the proof to show that ADFA is undecidable (it is not).
Begin by replacing each occurence of a Turing Machine with a DFA, and see what
happens. Where does the proof break down?

� Perhaps the proof breaks down not in the TM vs DFA part, but in the decidability part.
Try to mimic the proof that ATM is undecidable to show that ADFA is not regular.

Note: this problem is less concrete than some of the other problems we’ve encountered. Do
not expect clean, crisp answers. Instead, use this problem as a discussion point as you try to
determine how the proof that ATM is undecidable specifically uses that we’re working with
Turing Machine descriptions instead of DFA deccriptions.

7. Turing Machines with unary alphabets. An alphabet is unary if it consists of just one
character. In this problem, we’ll use a unary alphabet Σ = {a}. The purpose of this problem
is to explore whether unary encodings of DFAs (or NFAs or ...) are possible and whether
they are useful.

� In class, we saw an encoding of an arbitrary DFA using the alphabet {(, ),′ ,′ , 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
(call this the ”class encoding”.) Give an encoding of an arbitrary DFA using Σ.

� Describe a two-tape Turing Machine T which takes as input a unary encoding of an
arbitrary DFA 〈M〉 and writes out the class encoding of M on the second tape.

� Let BDFA = {〈M,w〉| M is a unary encoding of a DFA, w ∈ {a, b}∗, and M accepts w}.
Show that BDFA is decidable.

2


