CS 31: Lab 2 part 1 (due Feb 3, 2023 at the start of lab)
Names and Lab Section:

Instructions

1. Write legibly and show your work.
2. When writing number of different representations, use the following prefixes:

- 0b for binary numbers, e.g. 0b101010 is the binary value 101010
- $0 x$ for hexadecimal numbers, e.g. $0 \times 123 \mathrm{a}$ is the hexadecimal value 123 a
- no prefix for decimal numbers

Questions

1. What is the largest positive value that can be represented with an unsigned 8 -bit number? Briefly explain.
2. What is the largest positive value that can be represented with a signed (two's complement) 8 -bit number? Briefly explain.
3. Convert the unsigned 8-bit binary value 10100110 to decimal. Show your work.
4. Convert the signed 8-bit binary value 10100110 to decimal. Show your work.
5. Be sure to show your work for each question. Given the following 8 -bit binary values:
```
value1: 0b01011101
value2: 0.b01100101
```

(a) What is the decimal representation of the resulting addition if the two values are interpreted as 8-bit unsigned values?
(b) What is the decimal representation of the resulting addition if the two values are interpreted as 8-bit signed values?
(c) What is the binary representation of the result of adding the two values together? Does this operation result in overflow when the values are intepreted as unsigned, signed, both, or neither? Justify your answer.
(d) What is the binary representation of the result of subtracting the second from the first (value1 - value2)? Does this operation result in overflow when the values are intepreted as unsigned, signed, both, or neither? Justify your answer.
6. Convert the following 2-byte binary numbers directly to hexadecimal, without converting to decimal first. Recall that one hexadecimal digit corresponds to 4 bits. (The binary values have spaces between each set of 4 bits to make them more readable.)
(a) 0000011000011111
(b) 1100010111100101
(c) 1010011111010110
7. Convert the following hexadecimal numbers to 2-byte binary, without converting to decimal first. Recall that one hexadecimal digit corresponds to 4 bits.
(a) 0×23
(b) 0×852
(c) $0 x c 1 a 6$
(d) Oxefab
8. Convert the following decimal values to 8-bit signed (two's complement) binary and then convert your binary result into hexadecimal. Show your work.
(a) 12
(b) -36
(c) 123
(d) -123
9. Given the following 4-bit binary values, show the results of each bit-wise operation, showing both the binary and decimal result value for each (list the unsigned decimal value):
(a) $0110 \mid \sim(1010)$
(b) $\sim(0110$ | 1010)
(c) $0111 \& \sim(1001)$
(d) (1010 | 0000) \& 1111
(e) 0011 ^ 1110
(f) $0111 \ll 2$
(g) 0111 >> 2

