CS 31 Homework 2: Circuits

Due at the start of class Tuesday, October 10, 2023

Your names (include all members of your group):

1. Fill in the truth table for the following circuit. Note that this circuit is using NOT, XOR, NOR, NAND, and AND gates.

x	y	z	$\mathrm{OP} P_{1}(x, y, z)$	$\mathrm{OP} P_{2}(x, y, z)$
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

2. Construct a circuit that implements the following truth table. You may use any of the following one- or two-input gates: NOT, AND, OR, XOR, NAND, NOR, XNOR. Write out the boolean expression for OP_{1} and OP_{2} before attempting to draw the circuit.

HINT: For OP_{1}, can you describe each case when the output is 1 ? How would you combine all the cases into a single circuit? Repeat this for OP_{2}.

x	y	z	$\mathrm{OP}(\mathrm{P}, \mathrm{y}, \mathrm{z})$	$\mathrm{OP}(\mathrm{P}, \mathrm{y}, \mathrm{z})$
0	0	0	0	0
0	0	1	1	1
0	1	0	1	0
0	1	1	1	0
1	0	0	0	0
1	0	1	0	1
1	1	0	0	0
1	1	1	1	1

(Scratch space in case you want it.)

