
CS 31 Homework 8: Processes (due Thursday, Nov. 21, 2024)

Names of all students who worked on this submission::

Question 1

For the code snippet shown below (assume that all the calls to fork() succeed), answer the following
questions:

A. Draw a process hierarchy diagram that results from the execution of the code shown below. Your
diagram should be similar to Figure 2 in Section 13.2 of the textbook, where you draw a node for every
process and arrows from parent to child processes.

� Label each node with a letter to indicate the order in which it was spawned. In cases where the
order is not determined, choose a possible order.

� Next to each node, write the output value(s) that the process prints out with printf().

B. After this code executes, are there any zombie processes? Explain your answer in a sentence or two.

int i = 0;

pid_t pid;

printf("%d ", i);

for(i = 1; i < 3; i++) {

pid = fork();

printf("%d ", i);

}

if(pid != 0) {

wait(NULL);

} else {

exit(0);

}

https://diveintosystems.org/book/C13-OS/processes.html#phierarchyex


Question 2

Consider the code snippet shown below (and assume all calls to fork() succeed).

A. Draw the execution timeline corresponding to the code’s execution showing a possible ordering of
fork() and wait() calls from the proceses involved. Use Figure 7 in Section 13.2 of the textbook as
an example. Note: There are no newlines in the printf calls below, so the output should all be on a
single line.

pid_t pid1, pid2;

printf("1 ");

pid1 = fork();

if (pid1 == 0) {

pid2 = fork();

printf("2 ");

if (pid2 == 0) {

printf("3 ");

exit(0);

} else {

printf("4 ");

wait(NULL);

printf("5 ");

exit(0);

}

} else {

printf("6 ");

wait(NULL);

printf("7 ");

}

B. Which of the following outputs below are possible from executing the above code? For any that are
not, describe in one sentence why not.

i) 1 6 2 3 2 4 7 5

ii) 1 2 2 4 5 3 6 7

iii) 1 2 2 3 4 5 6 7

iv) 1 6 2 4 2 3 5 7

https://diveintosystems.org/book/C13-OS/processes.html#FigForkWait

