
Python (v3) Stack Frame Examples

CS21 at Swarthmore College



Basic Example

1 def f(x,y):
2 x = x + y
3 print(x)
4 return x
5

6 def main():
7 n = 4
8 out = f(n,2)
9 print(out)

10

11 main()

f:2

x

y

main:

At the beginning of the program, main is called. We create
a new stack frame. Since main has no parameters, the stack
frame is empty.

2/3



Basic Example

1 def f(x,y):
2 x = x + y
3 print(x)
4 return x
5

6 def main():
7 n = 4
8 out = f(n,2)
9 print(out)

10

11 main()

f:2

x

y

main:7

At the beginning of the program, main is called. We create
a new stack frame. Since main has no parameters, the stack
frame is empty.

2/3



Basic Example

1 def f(x,y):
2 x = x + y
3 print(x)
4 return x
5

6 def main():
7 n = 4
8 out = f(n,2)
9 print(out)

10

11 main()

f:2

x

y

main:7

When line 7 of main is executed, the variable n is set to the
value 4. We symbolize this by writing the variable name in the
stack frame and creating an object on the heap for the value.
We draw an arrow from the variable to its value.

2/3



Basic Example

1 def f(x,y):
2 x = x + y
3 print(x)
4 return x
5

6 def main():
7 n = 4
8 out = f(n,2)
9 print(out)

10

11 main()

f:2

x

y

main:8

n 4

When line 7 of main is executed, the variable n is set to the
value 4. We symbolize this by writing the variable name in the
stack frame and creating an object on the heap for the value.
We draw an arrow from the variable to its value.

2/3



Basic Example

1 def f(x,y):
2 x = x + y
3 print(x)
4 return x
5

6 def main():
7 n = 4
8 out = f(n,2)
9 print(out)

10

11 main()

f:2

x

y

main:8

n 4

When line 8 is executed, we will call f. To do so, we must
first determine the value of each of its arguments. In this
case, the first parameter is n, whose value is currently 4. The
second parameter is just 2.

2/3



Basic Example

1 def f(x,y):
2 x = x + y
3 print(x)
4 return x
5

6 def main():
7 n = 4
8 out = f(n,2)
9 print(out)

10

11 main()

f:2

x

y

main:8

n 4

Once we’ve established the value of the arguments on line 8
(4 and 2, respectively), the f function is called. We create
a new stack frame. Since f has two parameters, we create
variables for them in the stack frame. They point to their
corresponding values on the heap. 2/3



Basic Example

1 def f(x,y):
2 x = x + y
3 print(x)
4 return x
5

6 def main():
7 n = 4
8 out = f(n,2)
9 print(out)

10

11 main()

f:2

x

y 2

main:8

n 4

Once we’ve established the value of the arguments on line 8
(4 and 2, respectively), the f function is called. We create
a new stack frame. Since f has two parameters, we create
variables for them in the stack frame. They point to their
corresponding values on the heap. 2/3



Basic Example

1 def f(x,y):
2 x = x + y
3 print(x)
4 return x
5

6 def main():
7 n = 4
8 out = f(n,2)
9 print(out)

10

11 main()

f:2

x

y 2

main:8

n 4

Note that the stack frame for main is keeping track of where
we were in that function. When we are done with f, we will
return to that line.

2/3



Basic Example

1 def f(x,y):
2 x = x + y
3 print(x)
4 return x
5

6 def main():
7 n = 4
8 out = f(n,2)
9 print(out)

10

11 main()

f:2

x

y 2

main:8

n 4

When we run line 2 in f, we will update the variable x by
adding the contents of the variable y to it. Since ints are
immutable, we will create a new object on the heap and make
x point to it.

2/3



Basic Example

1 def f(x,y):
2 x = x + y
3 print(x)
4 return x
5

6 def main():
7 n = 4
8 out = f(n,2)
9 print(out)

10

11 main()

f:3

x

y 2

6

main:8

n 4

When we run line 2 in f, we will update the variable x by
adding the contents of the variable y to it. Since ints are
immutable, we will create a new object on the heap and make
x point to it.

2/3



Basic Example

1 def f(x,y):
2 x = x + y
3 print(x)
4 return x
5

6 def main():
7 n = 4
8 out = f(n,2)
9 print(out)

10

11 main()

f:3

x

y 2

6

main:8

n 4

Line 3 will print the contents of the x variable: in this case,
6.

2/3



Basic Example

1 def f(x,y):
2 x = x + y
3 print(x)
4 return x
5

6 def main():
7 n = 4
8 out = f(n,2)
9 print(out)

10

11 main()

f:4

x

y 2

6

main:8

n 4

Line 3 will print the contents of the x variable: in this case,
6.

2/3



Basic Example

1 def f(x,y):
2 x = x + y
3 print(x)
4 return x
5

6 def main():
7 n = 4
8 out = f(n,2)
9 print(out)

10

11 main()

f:4

x

y 2

6

main:8

n 4

Line 4 will return the value of x to the place where f was
called. As a result, the variable out in main is given the value
6, and the frame for f will be removed from the stack.

2/3



Basic Example

1 def f(x,y):
2 x = x + y
3 print(x)
4 return x
5

6 def main():
7 n = 4
8 out = f(n,2)
9 print(out)

10

11 main()

f:4

x

y

2

6

main:8

n 4

Line 4 will return the value of x to the place where f was
called. As a result, the variable out in main is given the value
6, and the frame for f will be removed from the stack.

2/3



Basic Example

1 def f(x,y):
2 x = x + y
3 print(x)
4 return x
5

6 def main():
7 n = 4
8 out = f(n,2)
9 print(out)

10

11 main()

f:4

x

y

2

6

main:9

n

out

4

Line 4 will return the value of x to the place where f was
called. As a result, the variable out in main is given the value
6, and the frame for f will be removed from the stack.

2/3



Basic Example

1 def f(x,y):
2 x = x + y
3 print(x)
4 return x
5

6 def main():
7 n = 4
8 out = f(n,2)
9 print(out)

10

11 main()

f:4

x

y

2

6

main:9

n

out

4

Line 9 prints the contents of the out variable (here, 6). After
it runs, the main function is complete and the program is
finished.

2/3



Basic Example

1 def f(x,y):
2 x = x + y
3 print(x)
4 return x
5

6 def main():
7 n = 4
8 out = f(n,2)
9 print(out)

10

11 main()

f:4

x

y

2

6

main:

n

out

4

Line 9 prints the contents of the out variable (here, 6). After
it runs, the main function is complete and the program is
finished.

2/3



Lists Example

1 def add_twice(x,lst):
2 lst.append(x)
3 lst.append(x)
4

5 def main():
6 data = [1]
7 add_twice(2,data)
8 print(data)
9 add_twice(3,data)

10 print(data)
11

12 main()

f:

x

lst

main:

1

list

As before, main is called at the start of this program. We create
a new stack frame for it.

3/3



Lists Example

1 def add_twice(x,lst):
2 lst.append(x)
3 lst.append(x)
4

5 def main():
6 data = [1]
7 add_twice(2,data)
8 print(data)
9 add_twice(3,data)

10 print(data)
11

12 main()

f:

x

lst

main:6

1

list

As before, main is called at the start of this program. We create
a new stack frame for it.

3/3



Lists Example

1 def add_twice(x,lst):
2 lst.append(x)
3 lst.append(x)
4

5 def main():
6 data = [1]
7 add_twice(2,data)
8 print(data)
9 add_twice(3,data)

10 print(data)
11

12 main()

f:

x

lst

main:6

1

list

Line 6 of main creates a new list containing just the value 1. A
reference to that list is stored in the data variable. We represent
the list by using a rounded box; we represent the reference as an
arrow. 3/3



Lists Example

1 def add_twice(x,lst):
2 lst.append(x)
3 lst.append(x)
4

5 def main():
6 data = [1]
7 add_twice(2,data)
8 print(data)
9 add_twice(3,data)

10 print(data)
11

12 main()

f:

x

lst

main:7

data 1

list

Line 6 of main creates a new list containing just the value 1. A
reference to that list is stored in the data variable. We represent
the list by using a rounded box; we represent the reference as an
arrow. 3/3



Lists Example

1 def add_twice(x,lst):
2 lst.append(x)
3 lst.append(x)
4

5 def main():
6 data = [1]
7 add_twice(2,data)
8 print(data)
9 add_twice(3,data)

10 print(data)
11

12 main()

f:

x

lst

main:7

data 1

list

Line 7 of main is a function call. Just as before, we create a
new stack frame and copy each argument into its corresponding
parameter. Here, we copy the value 2 into the variable x and we
copy the reference from data into the variable lst. 3/3



Lists Example

1 def add_twice(x,lst):
2 lst.append(x)
3 lst.append(x)
4

5 def main():
6 data = [1]
7 add_twice(2,data)
8 print(data)
9 add_twice(3,data)

10 print(data)
11

12 main()

f:2

x

lst

2

main:7

data 1

list

Line 7 of main is a function call. Just as before, we create a
new stack frame and copy each argument into its corresponding
parameter. Here, we copy the value 2 into the variable x and we
copy the reference from data into the variable lst. 3/3



Lists Example

1 def add_twice(x,lst):
2 lst.append(x)
3 lst.append(x)
4

5 def main():
6 data = [1]
7 add_twice(2,data)
8 print(data)
9 add_twice(3,data)

10 print(data)
11

12 main()

f:2

x

lst

2

main:7

data 1

list

Line 2 of add_twice appends a copy of the value in x to the
end of the list. Here, that value is 2. We change the list object
in our diagram to reflect this.

3/3



Lists Example

1 def add_twice(x,lst):
2 lst.append(x)
3 lst.append(x)
4

5 def main():
6 data = [1]
7 add_twice(2,data)
8 print(data)
9 add_twice(3,data)

10 print(data)
11

12 main()

f:3

x

lst

2

main:7

data 1 2

list

Line 2 of add_twice appends a copy of the value in x to the
end of the list. Here, that value is 2. We change the list object
in our diagram to reflect this.

3/3



Lists Example

1 def add_twice(x,lst):
2 lst.append(x)
3 lst.append(x)
4

5 def main():
6 data = [1]
7 add_twice(2,data)
8 print(data)
9 add_twice(3,data)

10 print(data)
11

12 main()

f:3

x

lst

2

main:7

data 1 2

list

Of course, line 3 does the same thing; this adds another 2 to our
list. Note that this function doesn’t return anything; it just adds
to the list.

3/3



Lists Example

1 def add_twice(x,lst):
2 lst.append(x)
3 lst.append(x)
4

5 def main():
6 data = [1]
7 add_twice(2,data)
8 print(data)
9 add_twice(3,data)

10 print(data)
11

12 main()

f:...

x

lst

2

main:7

data 1 2 2

list

Of course, line 3 does the same thing; this adds another 2 to our
list. Note that this function doesn’t return anything; it just adds
to the list.

3/3



Lists Example

1 def add_twice(x,lst):
2 lst.append(x)
3 lst.append(x)
4

5 def main():
6 data = [1]
7 add_twice(2,data)
8 print(data)
9 add_twice(3,data)

10 print(data)
11

12 main()

f:...

x

lst

2

main:7

data 1 2 2

list

Once we’re finished with the add_twice function, we destroy its
stack frame and return to executing main.

3/3



Lists Example

1 def add_twice(x,lst):
2 lst.append(x)
3 lst.append(x)
4

5 def main():
6 data = [1]
7 add_twice(2,data)
8 print(data)
9 add_twice(3,data)

10 print(data)
11

12 main()

f:

x

lst

2

main:8

data 1 2 2

list

Line 8 of main prints the contents of the list to which data
refers. Because of the call to add_twice, this list changed. So
main prints “[1,2,2]”.

3/3



Lists Example

1 def add_twice(x,lst):
2 lst.append(x)
3 lst.append(x)
4

5 def main():
6 data = [1]
7 add_twice(2,data)
8 print(data)
9 add_twice(3,data)

10 print(data)
11

12 main()

f:

x

lst

2

main:9

data 1 2 2

list

Line 9 of main calls add_twice again. Just as last time, we copy
the arguments into their respective parameters. This time, x is
set to 3; lst is still set to the same reference as data.

3/3



Lists Example

1 def add_twice(x,lst):
2 lst.append(x)
3 lst.append(x)
4

5 def main():
6 data = [1]
7 add_twice(2,data)
8 print(data)
9 add_twice(3,data)

10 print(data)
11

12 main()

f:2

x

lst

2

3

main:9

data 1 2 2

list

Line 9 of main calls add_twice again. Just as last time, we copy
the arguments into their respective parameters. This time, x is
set to 3; lst is still set to the same reference as data.

3/3



Lists Example

1 def add_twice(x,lst):
2 lst.append(x)
3 lst.append(x)
4

5 def main():
6 data = [1]
7 add_twice(2,data)
8 print(data)
9 add_twice(3,data)

10 print(data)
11

12 main()

f:2

x

lst

2

3

main:9

data 1 2 2

list

Once again, add_twice adds the value contained in x to the list
referenced by lst; it does this twice.

3/3



Lists Example

1 def add_twice(x,lst):
2 lst.append(x)
3 lst.append(x)
4

5 def main():
6 data = [1]
7 add_twice(2,data)
8 print(data)
9 add_twice(3,data)

10 print(data)
11

12 main()

f:3

x

lst

2

3

main:9

data 1 2 2 3

list

Once again, add_twice adds the value contained in x to the list
referenced by lst; it does this twice.

3/3



Lists Example

1 def add_twice(x,lst):
2 lst.append(x)
3 lst.append(x)
4

5 def main():
6 data = [1]
7 add_twice(2,data)
8 print(data)
9 add_twice(3,data)

10 print(data)
11

12 main()

f:...

x

lst

2

3

main:9

data 1 2 2 3 3

list

Once again, add_twice adds the value contained in x to the list
referenced by lst; it does this twice.

3/3



Lists Example

1 def add_twice(x,lst):
2 lst.append(x)
3 lst.append(x)
4

5 def main():
6 data = [1]
7 add_twice(2,data)
8 print(data)
9 add_twice(3,data)

10 print(data)
11

12 main()

f:...

x

lst

2

3

main:10

data 1 2 2 3 3

list

We finish add_twice, discarding its stack frame. We return to
main, where line 10 prints the contents of the list. Because it
has been changed again, we print [1,2,2,3,3] this time.

3/3



Lists Example

1 def add_twice(x,lst):
2 lst.append(x)
3 lst.append(x)
4

5 def main():
6 data = [1]
7 add_twice(2,data)
8 print(data)
9 add_twice(3,data)

10 print(data)
11

12 main()

f:...

x

lst

2

3

main:...

data 1 2 2 3 3

list

With that, the program is finished.

3/3



Lists Example

1 def add_twice(x,lst):
2 lst.append(x)
3 lst.append(x)
4

5 def main():
6 data = [1]
7 add_twice(2,data)
8 print(data)
9 add_twice(3,data)

10 print(data)
11

12 main()

f:...

x

lst

2

3

main:

data 1 2 2 3 3

list

With that, the program is finished.

3/3


