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Abstract

Q-learning is a reinforcement learning technique that works by learning an action-value function that
gives the expected utility of performing a given action in a given state and following a fixed policy
thereafter. The basic implementation uses a q-table to store the data. With increasing complexity in the
environment and the agent, this approach fails to scale well as the space requirements become prohibitive.
In this paper, we investigate an alternative implementation in which we use an artificial neural network
as a function approximator and eliminate the need for an explicit table.

1 Introduction

It is hard to be a robot, but its even harder to be
the programmer. For decades, researchers have at-
tempted to simulate intelligence and, more specif-
ically, create agents that can learn. An impor-
tant technique in machine learning is Reinforcement
learning. Reinforcement learning systems learn, by
trial and error, what the optimal action to take in
any state is. Feedback is given in the form of a re-
ward. The reward is defined in terms of the task to
be achieved; positive reward is given for successfully
achieving the task or for any action that brings the
agent closer to solving the task while negative re-
ward is given for any actions that impede the agent
from successfully achieving the task. According to
Gasket, ”Reinforcement learning lies between the
extremes of supervised learning, where the policy
is taught by an expert, and unsupervised learning
where no feedback is given and the task is to find
structure in the data” [1].

Q-learning is an example of a reinforcement learn-
ing technique used to train robots to develop an op-
timal strategy to solving a task. A table is often
used to store the utility data as the agent wanders
in the environment. In this paper, we will investi-
gate the practical limitations of using tables as well
as the viability of using artificial neural networks to
approximate the utility in place of using tables.

2 Q-Learning

Q-Learning uses an action-value function that cal-
culates the expected utility of performing a specific
action in a discrete state and following a fixed policy
thereafter. Three different functions are involved:
memorization, exploration and updating (fig 1) [2].
In response to the present situation, an action is
chosen. In order to ensure that both exploration and
exploitation are performed, a set probability value is
used alongside a randomly generated number to de-
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termine whether the agent will explore or exploit. If
the random number is above the probability thresh-
old, the optimal action yielding the highest q-value
is selected (exploitation). Otherwise, a random ac-
tion is selected (exploration). This promotes both
aspects of exploitation and exploration which are
necessary to ensure the success of the learning tech-
nique [2].

Each time the agent performs an action a in state
s at time t, the agent gets a reward r which repre-
sents how close it is to solving the task. The utility
for performing this action is then updated according
to the update rule:

Q(s, a) = Qt(s, a) + α[r + γ.maxQ(s′, a′)−Q(s, a)]
(1)

where s′ is the next state, a′ is the optimal action
in s′, α is the learning rate and γ is the discount
factor. After applying this rule, all the other en-
tries in the table remain unchanged. Since there is
an expected reward for each action in a multitude
of states, the total size of the table (state-space)
grows exponentially as the complexity of the prob-
lem increases. This rapid growth results in dismal
scalability in addition to physical space limitations
in terms of data storage.

Figure 1: The 3 functions of q-learning

3 Artificial Neural Networks
(ANN)

Artificial Neural Networks are models heavily
studied in both cognitive and computer science.
They are inspired by the structure and function
of biological neural networks. The basic building
blocks of neural nets are nodes that generate an
output value given an input value. At the net’s
extremities, input nodes usually consist of a single
input but can have multiple outputs. Inversely,
output nodes usually have a single output, but can
have a multitude of input connections. The neural
net uses these interconnected nodes to relay signals
across the structure, from an input source through
to an output. Each connection between nodes has
a weight parameter that affects what values the
nodes receive. The neural network is trained by
comparing the output to a target for a given set of
inputs, and generating an error value. This error
is then used to update the connections and/or the
weight of those connections in the neural net.

While much of the literature regarding the use
of neural nets for q-learning use recurrent neural
networks, we decided to use simple feed forward
nets instead. The difference between these two
types of neural net structures lies in types of
connections that are permitted and consequently,
the directional flow of data. In a recurrent neural
net, connections are allowed to establish loops in
such a manner where top layers can recursively feed
data back down to previous layers. This kind of net
allows for an abstract memory-retention structure
to emerge. In contrast, feed-forward nets are only
allowed to feed data upwards from lower layers to
higher layers. This results in a static directional
data flow.
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4 Q-learning on the light finding
task

The idea of developing a control system for a robot
by q-learning has been around for quite a while
[3]. The domain of problems has generally been
limited to light finding tasks, obstacle avoidance
tasks and the pole balancing problem [4][5]. For
our purposes, we are going to investigate q-learning
on a light seeking task. The light-seeking problem
consists of an agent in an environment with a single
light source, where the agent is expected to develop
a strategy for locating and subsequently reaching
the light[6][7].

4.1 Experiment Setup

The environment consists of a single robot with a
centrally located light source as shown in fig 2. The
experiment was setup and run in the pyrobot simu-
lator using a single pioneer robot.

In order to record useful measurements, the robot
was given the ability to sample two light value read-
ings, one to the left and one to the right, and then
contrast them. The robot also had the means to de-
tect obstacles, both directly ahead and behind it. It
achieved this by observing the readings it obtained
from the sonar sensors and determining if they were
below a threshold of 0.5. The total sensory input
this robot had is summarized fig 3 below.

4.2 State Representations

The sensors on the robot are used to generate a
representation of the state the robot is currently in.
Therefore, the state is simply a summary of what
the robot is currently perceiving. In addition to
these perceptions, we also include limited internal
state information when generating a state represen-

Figure 2: Experiment Setup

tation for the robot. Specifically, we include the
value of a variable that reports whether light sensor
values have not changed in 5 consecutive time steps.
The motivations behind having this extra piece of
information lie in the fact that our goal is to mo-
tivate the robot to move towards the light source.
If the light values are not changing this is an in-
dication that the robot might be stuck somewhere,
or the robot is repeating a sequence of forward and
backward movements. Since this is something un-
desirable, offering negative reward in these situa-
tions may assist the learning process. In order to
offer the negative reward however, it is necessary
to know that the above-mentioned situation is hap-
pening, hence the need for that variable.

In order to fully explore the strengths and weak-
nesses of q-learning, we propose evaluating the per-
formance of q-learning in both a very rich as well as
a constrained representation of the environment. In
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Figure 3: The sensor groups used in the experiment
were front and back for sonar as well as front-left
and front-right for the light sensors

both cases, q-learning will be done with the q-table
and the artificial neural net implementation.

In the constrained (simple) representation of the
environment, the state is represented as a 4-tuple
(w, x, y, z). The variable w is associated with the
light values. If the reading in the left light sensor is
higher than the one on the right, w is given a value
of 0. If the right light sensor is higher, w is set to 1.
Finally, if both light sensors are equal, w is set to 2.
Since the pyrobot light sensors are highly sensitive,
we have defined equal to mean the light values are
within 0.01 of each other. The next variable, x, is a
binary variable which monitors proximity to an ob-
stacle in front of the robot. The sonar sensors are
used to determine this. If the front sonar sensors
report a value less than 0.5 (meaning an obstacle is
close), x is set to 1. The same applies for y except

that it refers to the rear sonar sensors. The final
variable, z, is a binary variable that is activated if
the light sensor values have not changed in the last
5 consecutive time steps. Again, due to the sensi-
tivity of the light sensors, the values are deemed to
have not changed is they are all within 0.01 units of
each other. The entire state space is therefore made
of 3× 2× 2× 2 combinations of the percepts, or 24
unique states.

Figure 4: The different percepts that are used to
define a state in simple representation

In the rich representation of the environment,
things are a bit different. Instead of using a 4-tuple
to represent the environment, we use a 6-tuple in
order to capture more information about the en-
vironment hence making the representation more
complex. The 6-tuple (u, v, w, x, y, z) is constructed
as follows: u represents the left light sensor values.
Since the light values go between 0 and 1, we decided
to descretize these values by demarcating them into
5 possible ranges: 0-0.2, 0.2-0.4, 0.4-0.6, 0.6-0.8 and
0.8-1.0 with the values for u being 0,1,2,3,4 respec-
tively. v represents right light sensor value with the
same setup as u. Next, w, x and y are binary and
represent the presence of an obstacle in front, to
the right and to the left of the robot respectively.
The final variable, z represents whether light read-
ings have not changed in the last 5 time steps. No-
tice that proximity to an obstacle at the rear of the
robot was omitted since the robot was not allowed
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to move backwards in this part of the experiment.
We removed the robots ability to move backward
because it drastically slowed the learning process
by making repeated forward and backward move-
ments. In this case the entire state space is made
up of 5× 5× 2× 2× 2× 2 different combinations or
400 unique states.

4.3 Actions

For every time-step, the robot is capable of finding
the reinforcement value that it is awarded for
performing a specific action in its current state.
In order to follow a completely optimal strategy,
the robot will have to choose the action with the
highest q-value in any given state. When the
q-value function has converged to the true payoffs
for the state and action pair, then this policy is
optimal. In the early stages of learning however,
this is not the case and as such it is necessary to en-
courage exploration by choosing actions that do not
necessarily yield the highest reinforcement values.
Additionally, an effective exploration strategy is
also necessary because if the strategy is inefficient,
it could lead to an exponential increase in time and
solutions length [3]. One way to achieve this is to
use the Boltzmann probability distribution [6].

P (a|x) =
eQ(x,a)/T∑
b∈A e

Q(x,b)/T
(2)

where T balances the effect of exploration vs ex-
ploitation with a strong bias towards exploration
during the early stages of the learning curve. Grad-
ually this is reduced as the experiment progresses
so as to favor exploitation.

The actions the robot can take in any given state
are represented as a 2-tuple (r, l) which represents
right and left motor values respectively. The total
action space is shown in figure 5 below.

Figure 5: The entire action space for the robot

4.4 Reinforcement Values

The core of the entire q-learning algorithm revolves
around the premise of a reward scheme. In order
for q-learning to function correctly, it is imperative
that the robot be able to determine the approximate
value of an action immediately after performing the
action. A successful reward scheme for the light
finding task is one that awards the robot for getting
closer to areas of brighter light thus implicitly mo-
tivating the robot to find the light [7].The following
is a possible reward scheme for this problem.

Since the goal is to find the light, it makes sense
to reward the robot for actually getting to a light
source. As we are using pyrobot light sensors for
this experiment, getting to the light is defined as
the instance when either (or both) of the light sen-
sor readings registers a value above 0.95. This works
because the brightness of the light source was set to
1.0 in this experiment. For reaching light, the robot
is given a reward of 3.

Approaching the light is also a desirable control
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sequence. In the rich representation of the environ-
ment, any approach to the light was given a rein-
forcement value of 2. For the simple representation
of the environment however, the value of the larger
current light reading minus the larger reading in
the last time step was given as the reward. This
method works well in that provides positive reward
when the robot approaches a light source, and neg-
ative reward in instances where it moves away. We
avoided having a similar scheme for the rich envi-
ronment as we felt this complexity might impede
the learning speed of the robot and as such we re-
sorted to using a static reinforcement value of 2 in
the rich environment.

Since the goal of this experiment is to get to the
light source, it is implicit that the robot be able to
avoid obstacles so as be successful in reaching the
light. If at any point the robot collides with the
walls either at the front or the rear, a negative re-
inforcement value of -2 is given.

It is also necessary to motivate the robot to con-
tinuously move (towards the areas of brighter light).
If for any reason the light values remain the same
over 5 consecutive time steps, the robot is given a
negative reward of -2.

5 Experiments

5.1 Q-table Implementation

Under this implementation, the objective is to build
a table for storing the q-values. This implementa-
tion is suitable for small size problems, as it may
take really long time for the q-function to converge
if the problem is exceedingly complex [4]. With
this implementation, storage size is a function of
the state and action space. For the simple envi-
ronment, we have 24 states × 9 actions resulting
in a table with 216 entries. In the rich representa-
tion of the world, there are 400 states × 9 actions,

producing a table with 3600 entries. Incidentally,
we propose that the task should be more difficult
to learn in the rich environment since its q-table is
significantly larger.

Figure 6: Q-table just after initializing

The learning procedure for the robot when using
the table can be described in the following steps:

1. Initialize entries to random values in the inter-
val -0.15 to 0.15.

2. Place the robot at a random location in the
environment.

3. Get current state

4. Determine an action according to equation 2.

5. Perform the action and determine the new
state.

6. Get the associated reinforcement values and
update the table according to the update rule
in equation 1.

7. Repeat 3-5 above until agent gets to the light.

8. Repeat 2-6 above for the total number of runs
during the experiment.

The action-perception loop can be summarized by
the following diagram:
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Figure 7: The action-perception loop

5.2 Neural Net Implementation

The q-table implementation of q-learning is favor-
able for its simplicity of implementation. However,
as the state-action space becomes more complex,
it becomes increasingly difficult to train and up-
date the table as the environment is explored. Fur-
thermore, if the environment is very complex, then
the size of the state-action space may become pro-
hibitively large. In order to overcome these prob-
lems, q-learning can be implemented using a neural
network as a function approximator for q-values [3].

For the purposes of this experiment, we are going
to use the conx library provided as part as pyrobot.
For the simple environment, a neural network with
6 input nodes (4 for the state representation and 2
for the motor actions), 4 hidden nodes and 1 out-
put node is ideal. For the rich environment, we use
a network with 8 inputs nodes (6 for the state and 2

for the motor action), 4 hidden nodes and 1 output
node. The network accepts a state and an action
as input and outputs the approximated q-value for
that state-action pair.

Additionally, it is important to note that the neu-
ral network only accepts values in the range of 0.0-
1.0 hence it is necessary to scale some of the inputs
to the network to fit in that range. Furthermore,
the motors require instructions in the range of -
1 (full reverse) to 1 (full forward). The function
f(x) = (x + 1)/2 is used to translate values into
the necessary range for this purpose. Lastly, the
reinforcement values also need to be made neural
network friendly. Mapping the reinforcement val-
ues of -2, 0, 2, 3 to 0, 0.5, 0.75 and 1 respectively
seems to work for this experiment.

The learning procedure using this implementation
can be described as follows[5]:

1. Initialize the neural network

2. Place the robot at a random location in the
environment

3. Obtain the current state

4. Obtain Q(x, a) for each action by substituting
the state and action pairs into the neural net,
keeping track of those values.

5. Determine an action according to equation 2,
so as to be able to balance between exploration
and exploitation.

6. Make the move and get new state

7. Get the associated reinforcement values for tak-
ing the particular action in the previous state

8. Generate Qtarget(x, a) according to equation
1and use Qtarget to train the net as shown in
fig 8 below.
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9. Repeat 3-8 until the robot finds the light.

10. Repeat 2-9 for the number of runs of the ex-
periment.

Figure 8: Neural net layout for approximating the
target q-values

Figure 9: The action-perception loop

6 Results

Our goal was to encourage the robot to learn a con-
trol strategy to solve the light finding task. In or-
der to achieve this, we allowed the robot to wander

around in the environment until is appeared to have
learned a successful approach to the problem.

In as far as the reward schemes for the two imple-
mentations are concerned, there were slight modi-
fications we implemented into the simple environ-
ment experiment that did not exist in the complex
environment. As stated earlier, the robot was given
a reward of 3 for getting to the light and a reward
of 2 for inching closer to the light. In the simple
environment experiment, we altered this scheme so
that for getting to the light the robot was given a
reward of 3 but for getting closer to the light the re-
inforcement value was given as current light reading
- previous current reading. The advantage with this
metric is that is has the ability to reward the robot
as well as punishing it for getting further away from
the light by giving it a negative reinforcement.

We were only able to identify the new reward
scheme after having run the experiments on the
complex environment, and as such a fair comparison
of the progression of reward between the two envi-
ronment representation is therefore not available at
this time.

6.1 Complex Environment

For the complex environment, the results were not
very promising. We ran the experiment for 5000,
10000 and 30000 epochs and in all instances it was
apparent that the robot had not learned how to suc-
cessfully perform the light finding task. Both imple-
mentations were not able to achieve a success rate
of more than 30%. It was interesting to note that
even though the experiment did not go as expected,
the neural net implementation appeared to perform
better than the table implementation. This is prob-
ably due to the fact that such an immensely sized
table is difficult to populate. However, we believe
that if we ran the experiment indefinitely, we might
have achieved better success rates.
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Figure 10: After 30000 epochs of learning in the
complex environment the task was still not learnt

The progression of accumulated reward over time
also did not appear as anticipated. The progression
for the neural net implementation appeared to be
more stable, an indication that learning might have
been going on more smoothly albeit slowly. The
progression for the table implementation was very
haphazard an indication that the robot was having
a hard time to learn the task.

6.2 Simple Environment

For the simple environment, the results were more
promising. After only 3000 epochs (compared to
30000) for the previous experiment, success rates
were going up to upwards of 80%. In this exper-
iment, the neural net implementation performed
more poorly than the table implementation. The
reason for this might be the simplicity of the envi-
ronment resulting in a smaller table, hence the ease
with which the q-table values converged. We feel
that due to the disproportionate allocation of time

Figure 11: After 30000 epochs the progression of
the total acquired reward was hard to interpret

to the different states, the neural net might have
become overtrained on some states rendering it use-
less to some states it might not have seen as often.

As a result of the difference in the reward schemes
between the two experiments, we felt it unfair to
compare the progression of accumulated reward over
time for the two implementations hence we decided
to omit the reward results for this experiment for
that very fact. We hope in due course, to perform
another set of experiments with the reward func-
tions being similar so that the analysis between of
the reward progression over time can actually be
performed.

Figure 13 shows the allocation of time spent in
each state by the robot. It is interesting to note
that the robot spent a great deal of time in state
(1, 0, 0, 1) and (2, 0, 0, 1). Both of these states have
the property that the light values had remained con-
stant over the last 5 time steps. At first, we were
shocked by these results but on closer inspection we
realized the robot would sometimes get in situations
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where it would move forward and then immediately
backwards and do this repeatedly until it changed
its sequence of moves. We are not entirely sure why
this was the case but we can confidently state that
this didn’t impede the learning process as shown by
our results. State (0, 0, 0, 0) was the next most com-
mon state This was the state where the light was on
the left, away from walls and light values were not
repeating. This was in line with our expectations
as were anticipated that the robot would be in this
state a lot of the time.

Figure 12: After only 3000 epochs the table imple-
mentation was doing pretty well

7 Summary and Conclusions

In this paper we have shown an implementation of
q-learning using both a neural network and a tradi-
tional q-table across simplified and complex repre-
sentation of the environment to solve the light find-
ing task. The results showed that q-learning in gen-
eral is not a viable approach to machine learning
when the environment is very complex and in such

Figure 13: Simple Environment: Distribution of the
time spent in each state

instances, other methods might work better. The
results also show that the more complex the envi-
ronment gets, the better the neural net implemen-
tation does over the q-table implementation. We
anticipate that the difference between the two ap-
proaches in the complex environment might only be-
come apparent after more than 30000 learning iter-
ations. The results also show that in simpler envi-
ronments in which the state-action space is contain-
able, a neural network implementation of q-learning
is not the best approach and a traditional q-table
implementation is probably better.

8 Future Directions

There are many aspects of the neural net imple-
mentation that can be profitably improved, many
of which could not be done simply due to the time-
frame in which we had to complete the project.

There exists literature that discuses using lin-
ear activation functions with regards to neural net-
works[6]. This might prove to be an interesting ex-
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tension as it would allow for a more continuous rep-
resentation of the q-values. We expect this to work
better than the sigmoid function we used in this ex-
periment.

As far as the neural net structure is concerned,
one possible extension might be to have a neural
network for each action rather than having a uni-
versal neural net that works for all actions [6]. The
obvious advantage to this is that since the net has
to be trained on fewer cases (1/9 of the current),
training should inherently be faster in this system.
The system will also be immune to the problem of
overtraining that might exist in the current imple-
mentation in the event that the net is subjected to
multiple consecutive encounters with the same ac-
tion.

A large percentage of related work on this sub-
ject also included some notion of using a recur-
rent Elman net in their implementation rather the
standard back-propagation feed-forward network we
used for this experiment[4][5]. While there has been
widespread use of this implementation, we are not
sure and cannot speculate on what the potential ad-
vantages of doing it this way might be.
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