CHAPTER

INTRODUCTION

Ever since computers were invented, we have wondered whether they might be
made to learn. If we could understand how to program them to learn—to improve
automatically with experience—the impact would be dramatic. Imagine comput-
ers learning from medical records which treatments are most effective for new
diseases, houses learning from experience to optimize energy costs based on the
particular usage patterns of their occupants, or personal software assistants learn-
ing the evolving interests of their users in order to highlight especially relevant
stories from the online moming newspaper. A successful understanding of how to
make computers learn would open up many new uses of computers and new levels
of competence and customization. And a detailed understanding of information-
processing algorithms for machine learning might lead to a better understanding
of human learning abilities (and disabilities) as well.

We do not yet know how to make computers learn nearly as well as people
learn. However, algorithms have been invented that are effective for certain types
of leaming tasks, and a theoretical understanding of leaming is beginning to
emerge. Many practical computer programs have been developed to exhibit use-
ful types of learning, and significant commercial applications have begun to ap-
pear. For problems such as speech recognition, algorithms based on machine
learning outperform all other approaches that have been attempted to date. In
the field known as data mining, machine learning algorithms are being used rou-
tinely to discover valuable knowledge from large commercial databases containing
equipment maintenance records, loan applications, financial transactions, medical
records, and the like. As our understanding of computers continues to mature, it

1

2 MACHINE LEARNING

seems inevitable that machine learning will play an increasingly central role in
computer science and computer technology.

A few specific achievements provide a glimpse of the state of the art: pro-
grams have been developed that successfully learn to recognize spoken words
(Waibel 1989; Lee 1989), predict recovery rates of pneumonia patients (Cooper
et al. 1997), detect fraudulent use of credit cards, drive autonomous vehicles
on public highways (Pomerleau 1989), and play games such as backgammon at
levels approaching the performance of human world champions (Tesauro 1992,
1995). Theoretical results have been developed that characterize the fundamental
relationship among the number of training examples observed, the number of hy-
potheses under consideration, and the expected error in learned hypotheses. We
are beginning to obtain initial models of human and animal learning and to un-
derstand their relationship to learning algorithms developed for computers (e.g.,
Laird et al. 1986; Anderson 1991; Qin et al. 1992; Chi and Bassock 1989; Ahn
and Brewer 1993). In applications, algorithms, theory, and studies of biological
systems, the rate of progress has increased significantly over the past decade. Sev-
eral recent applications of machine learning are summarized in Table 1.1. Langley
and Simon (1995) and Rumelhart et al. (1994) survey additional applications of
machine learning.

This book presents the field of machine learning, describing a variety of
learning paradigms, algorithms, theoretical results, and applications. Machine
learning is inherently a multidisciplinary field. It draws on results from artifi-
cial intelligence, probability and statistics, computational complexity theory, con-
trol theory, information theory, philosophy, psychology, neurobiology, and other
fields. Table 1.2 summarizes key ideas from each of these fields that impact the
field of machine learning. While the material in this book is based on results from
many diverse fields, the reader need not be an expert in any of them. Key ideas
are presented from these fields using a nonspecialist’s vocabulary, with unfamiliar
terms and concepts introduced as the need arises.

1.1 WELL-POSED LEARNING PROBLEMS

Let us begin our study of machine learning by considering a few learning tasks. For
the purposes of this book we will define learning broadly, to include any computer
program that improves its performance at some task through experience. Put more

precisely,

Definition: A computer program is said to learn from experience E with respect
to some class of tasks T and performance measure P, if its performance at tasks in
T, as measured by P, improves with experience E.

For example, a computer program that learns to play checkers might improve
its performance as measured by its ability to win at the class of tasks involving
playing checkers games, through experience obtained by playing games against
itself. In general, to have a well-defined learning problem, we must identity these

CHAPTER 1 INTRODUCTION 3

o Leamning to recognize spoken words.
All of the most successful speech recognition systems employ machine learning in some form.
For example, the SPHINX system (e.g., Lee 1989) leamns speaker-specific strategies for recognizing
the primitive sounds (phonemes) and words from the observed speech signal. Neural network
learning methods (e.g., Waibel et al. 1989) and methods for learning hidden Markov models
(e.g., Lee 1989) are effective for automatically customizing to individual speakers, vocabularies,
microphone characteristics, background noise, etc. Similar techniques have potential applications
in many signal-interpretation problems.

¢ Learning to drive an autonomous vehicle.
Machine learning methods have been used to train computer-controlled vehicles to steer correctly
when driving on a variety of road types. For example, the ALVINN system (Pomerleau 1989)
has used its learned strategies to drive unassisted at 70 miles per hour for 90 miles on public
highways among other cars. Similar techniques have possible applications in many sensor-based
contro} problems.

o Learning to classify new astronomical structures.
Machine learning methods have been applied to a variety of large databases to learn general
regularities implicit in the data. For example, decision tree learning algorithms have been used
by NASA to learn how to classify celestial objects from the second Palomar Observatory Sky
Survey (Fayyad et al. 1995). This system is now used to autornatically classify all objects in the
Sky Survey, which consists of three terrabytes of image data.

o Learning to play world-class backgammon.
The most successful computer programs for playing games such as backgammon are based on
machine learning algorithms. For example, the world’s top computer program for backgammon,
TD-GammoN (Tesauro 1992, 1995), learned its strategy by playing over one million practice
games against itself. It now plays at a level competitive with the human world champion. Similar
techniques have applications in many practical problems where very large search spaces must be
examined efficiently.

TABLE 1.1
Some successful applications of machine learning.

three features: the class of tasks, the measure of performance to be improved, and
the source of experience.

A checkers learning problem:

e Task T: playing checkers
o Performance measure P: percent of games won against opponents
o Training experience E: playing practice games against itself

We can specify many learning problems in this fashion, such as leaming
to recognize handwritten words, or learning to drive a robotic automobile au-

tonomously.

A handwriting recognition learning problem:

o Task T: recognizing and classifying handwritten words within images
¢ Performance measure P: percent of words correctly classified

4 MACHINE LEARNING

o Artificial intelligence
Learning symbolic representations of concepts. Machine learning as a search problem. Learning
as an approach to improving problem solving. Using prior knowledge together with training data
to guide learning.

o Bayesian methods
Bayes’ theorem as the basis for calculating probabilities of hypotheses. The naive Bayes classifier.
Algorithms for estimating values of unobserved variables.

o Computational complexity theory
Theoretical bounds on the inherent complexity of different learning tasks, measured in terms of
the computational effort, number of training examples, number of mistakes, etc. required in order
to learn.

o Control theory
Procedures that learn to control processes in order to optimize predefined objectives and that learn
to predict the next state of the process they are controlling.

¢ Information theory
Measures of entropy and information content. Minimum description length approaches to learning.
Optimal codes and their relationship to optimal training sequences for encoding a hypothesis.

o Philosophy
Occam’s razor, suggesting that the simplest hypothesis is the best. Analysis of the justification for
generalizing beyond observed data.

o Psychology and neurobiology
The power law of practice, which states that over a very broad range of learning problems,
people’s response time improves with practice according to a power law. Neurobiological studies
motivating artificial neural network models of learning.

o Statistics
Characterization of errors (e.g., bias and vanance) that occur when estimating the accuracy of a
hypothesis based on a limited sample of data. Confidence intervals, statistical tests.

TABLE 1.2
Some disciplines and examples of their influence on machine learning.

o Training experience £: a database of handwritten words with given classi-
fications

A robot driving learning problem:

e Task T: driving on public four-lane highways using vision sensors

e Performance measure P: average distance traveled before an error (as judged
by human overseer))

o Training experience E: a sequence of images and steering commands record-
ed while observing a human driver

Our definition of learning is broad enough to include most tasks that we
would conventionally call “learning” tasks, as we use the word in everyday lan-
guage. It is also broad enough to encompass computer programs that improve
from experience in quite straightforward ways. For example, a database system

CHAPTER | INTRODUCTION 5

that allows users to update data entries would fit our definition of a learning
system: it improves its performance at answering database queries, based on the
experience gained from database updates. Rather than worry about whether this
type of activity falls under the usual informal conversational meaning of the word
“learning,” we will simply adopt our technical definition of the class of programs
that improve through experience. Within this class we will find many types of
problems that require more or less sophisticated solutions. Our concern here is
not to analyze the meaning of the English word “learning” as it is used in ev-
eryday language. Instead, our goal is to define precisely a class of problems that
encompasses interesting forms of learning, to explore algorithms that solve such
problems, and to understand the fundamental structure of learning problems and
processes.

1.2 DESIGNING A LEARNING SYSTEM

In order to illustrate some of the basic design issues and approaches to machine
learning, let us consider designing a program to learn to play checkers, with
the goal of entering it in the world checkers tournament. We adopt the obvious
performance measure: the percent of games it wins in this world tournament.

1.2.1 Choosing the Training Experience

The first design choice we face is to choose the type of training experience from
which our system will learn. The type of training experience available can have a
significant impact on success or failure of the learner. One key attribute is whether
the training experience provides direct or indirect feedback regarding the choices
made by the performance system. For example, in learning to play checkers, the
system might learn from direct training examples consisting of individual checkers
board states and the correct move for each. Alternatively, it might have available
only indirect information consisting of the move sequences and final outcomes
of various games played. In this later case, information about the correctness
of specific moves early in the game must be inferred indirectly from the fact
that the game was eventually won or lost. Here the learner faces an additional
problem of credit assignment, or determining the degree to which each move in
the sequence deserves credit or blame for the final outcome. Credit assignment can
be a particularly difficult problem because the game can be lost even when early
moves are optimal, if these are followed later by poor moves. Hence, learning from
direct training feedback is typically easier than learning from indirect feedback.
A second important attribute of the training experience is the degree to which
the learner controls the sequence of training examples. For example, the learner
might rely on the teacher to select informative board states and to provide the
correct move for each. Alternatively, the learner might itself propose board states
that it finds particularly confusing and ask the teacher for the correct move. Or the
learner may have complete control over both the board states and (indirect) training
classifications, as it does when it learns by playing against itself with no teacher

6 MACHINE LEARNING

present. Notice in this last case the learner may choose between experimenting
with novel board states that it has not yet considered, or honing its skill by playing
minor variations of lines of play it currently finds most promising. Subsequent
chapters consider a number of settings for learning, including settings in which
training experience is provided by a random process outside the learner’s control,
settings in which the learner may pose various types of queries to an expert teacher,
and settings in which the learner collects training examples by autonomously
exploring its environment.

A third important attribute of the training experience is how well it repre-
sents the distribution of examples over which the final system performance P must
be measured. In general, learning is most reliable when the training examples fol-
low a distribution similar to that of future test examples. In our checkers learning
scenario, the performance metric P is the percent of games the system wins in
the world tournament. If its training experience E consists only of games played
against itself, there is an obvious danger that this training experience might not
be fully representative of the distribution of situations over which it will later be
tested. For example, the learner might never encounter certain crucial board states
that are very likely to be played by the human checkers champion. In practice,
it is often necessary to learn from a distribution of examples that is somewhat
different from those on which the final system will be evaluated (e.g., the world
checkers champion might not be interested in teaching the program!). Such situ-
ations are problematic because mastery of one distribution of examples will not
necessary lead to strong performance over some other distribution. We shall see
that most current theory of machine learning rests on the crucial assumption that
the distribution of training examples is identical to the distribution of test ex-
amples. Despite our need to make this assumption in order to obtain theoretical
results, it is important to keep in mind that this assumption must often be violated
in practice.

To proceed with our design, let us decide that our system will train by
playing games against itself. This has the advantage that no external trainer need
be present, and it therefore allows the system to generate as much training data
as time permits. We now have a fully specified learning task.

A checkers learning problem:

e Task T: playing checkers
o Performance measure P: percent of games won in the world tournament

o Training experience E: games played against itself
In order to complete the design of the learning system, we must now choose

1. the exact type of knowledge to be learned
2. a representation for this target knowledge
3. a learning mechanism

CHAPTER 1 INTRODUCTION 7

1.2.2 Choosing the Target Function

The next design choice is to determine exactly what type of knowledge will be
learned and how this will be used by the performance program. Let us begin with
a checkers-playing program that can generate the lega/ moves from any board
state. The program needs only to learn how to choose the best move from among
these legal moves. This learning task is representative of a large class of tasks for
which the legal moves that define some large search space are known a priori, but
for which the best search strategy is not known. Many optimization problems fall
into this class, such as the problems of scheduling and controlling manufacturing
processes where the available manufacturing steps are well understood, but the
best strategy for sequencing them is not.

Given this setting where we must learn to choose among the legal moves,
the most obvious choice for the type of information to be learned is a program,
or function, that chooses the best move for any given board state. Let us call this
function ChooseMove and use the notation ChooseMove : B — M to indicate
that this function accepts as input any board from the set of legal board states B
and produces as output some move from the set of legal moves M. Throughout
our discussion of machine learning we will find it useful to reduce the problem
of improving performance P at task T to the problem of learning some particu-
lar target function such as ChooseMove. The choice of the target function will
therefore be a key design choice.

Although Choose Move is an obvious choice for the target function in our
example, this function will turn out to be very difficult to learn given the kind of in-
direct training experience available to our system. An alternative target function—
and one that will turn out to be easier to learn in this setting—is an evaluation
function that assigns a numerical score to any given board state. Let us call this
target function V and again use the notation V : B — 9 to denote that V maps
any legal board state from the set B to some real value (we use % to denote the set
of real numbers). We intend for this target function V to assign higher scores to
better board states. If the system can successfully learn such a target function V,
then it can easily use it to select the best move from any current board position.
This can be accomplished by generating the successor board state produced by
every legal move, then using V to choose the best successor state and therefore
the best legal move.

What exactly should be the value of the target function V for any given
board state? Of course any evaluation function that assigns higher scores to better
board states will do. Nevertheless, we will find it useful to define one particular
target function V among the many that produce optimal play. As we shall see,
this will make it easier to design a training algorithm. Let us therefore define the
target valne V() for an arbitrary board state b in B, as follows:

1. if b is a final board state that is won, then V(b) = 100
2. if b is a final board state that is lost, then V(b) = —100
3. if b is a final board state that is drawn, then V(b) =0

8 MACHINE LEARNING

4. if b is a not a final state in the game, then V() = V ('), where &’ is the best
final board state that can be achieved starting from b and playing optimally
until the end of the game (assuming the opponent plays optimally, as well).

While this recursive definition specifies a value of V(b) for every board
state b, this definition is not usable by our checkers player because it is not
efficiently computable. Except for the trivial cases (cases 1-3) in which the game
has already ended, determining the value of V(b) for a particular board state
requires (case 4) searching ahead for the optimal line of play, all the way to
the end of the game! Because this definition is not efficiently computable by our
checkers playing program, we say that it is a nonoperational definition. The goal
of learning in this case is to discover an operational description of V; that is, a
description that can be used by the checkers-playing program to evaluate states
and select moves within realistic time bounds.

Thus, we have reduced the learning task in this case to the problem of
discovering an operational description of the ideal target function V. It may be
very difficult in general to learn such an operational form of V perfectly. In fact,
we often expect learning algorithms to acquire only some approximation to the
target function, and for this reason the process of learning the target function
is often called function approximation. In the current discussion we will use the
symbol V to refer to the function that is actually learned by our program, to
distinguish it from the ideal target function V.

1.2.3 Choosing a Representation for the Target Function

Now that we have specified the ideal target function V, we must choose a repre-
sentation that the learning program will use to describe the function V that it will
learn. As with earlier design choices, we again have many options. We could,
for example, allow the program to represent V using a large table with a distinct
entry specifying the value for each distinct board state. Or we could allow it to
represent V using a collection of rules that match against features of the board
state, or a quadratic polynomial function of predefined board features, or an arti-
ficial neural network. In general, this choice of representation involves a crucial
tradeoff. On one hand, we wish to pick a very expressive representation to allow
representing as close an approximation as possible to the ideal target function V.
On the other hand, the more expressive the representation, the more training data
the program will require in order to choose among the alternative hypotheses it
can represent. To keep the discussion brief, let us choose a simple representation:
for any given board state, the function V will be calculated as a linear combination
of the following board features:

e x;: the number of black pieces on the board
e x;: the number of red pieces on the board
e x3: the number of black kings on the board
e x4: the number of red kings on the board

CHAPTER | INTRODUCTION 9

e xs5. the number of black pieces threatened by red (i.e., which can be captured
on red’s next turn)

e xg: the number of red pieces threatened by black

Thus, our learning program will represent V(b) as a linear function of the
form

V(b) = wo + w1x| + waxz + w3x3 + waxs + wsxs + wexs

where wyg through wg are numerical coefficients, or weights, to be chosen by the
learning algorithm. Learned values for the weights w, through wg will determine
the relative importance of the various board features in determining the value of
the board, whereas the weight wo will provide an additive constant to the board

value.
To summarize our design choices thus far, we have elaborated the original

formulation of the learning problem by choosing a type of training experience,
a target function to be learned, and a representation for this target function. Our
elaborated learning task is now

Partial design of a checkers learning program:

e Task T: playing checkers

¢ Performance measure P: percent of games won in the world tournament
¢ Training experience E: games played against itself

Target function: V:Board — R

Target function representation

V(b) = wo + wix| + wrxy + Wwix3z + waXq + wsxs + Wexe

The first three items above correspond to the specification of the learning task,
whereas the final two items constitute design choices for the implementation of the
learning program. Notice the net effect of this set of design choices is to reduce
the problem of learning a checkers strategy to the problem of learning values for
the coefficients wy through we in the target function representation.

1.2.4 Choosing a Function Approximation Algorithm

In order to learn the target function V we require a set of training examples, each
describing a specific board state 4 and the training value V,,4;,(b) for b. In other
words, each training example is an ordered pair of the form (b, V,.4i,(b)). For
instance, the following training example describes a board state 4 in which black
has won the game (note x; = 0 indicates that red has no remaining pieces) and
for which the target function value V,,,,(b) 1s therefore +-100.

<<X1 = 3!x2 :0,X3 = l,_X4 - Oy X5 = 0, X = 0), -f—lOO)

10 MACHINE LEARNING

Below we describe a procedure that first derives such training examples from
the indirect training experience available to the learner, then adjusts the weights
w; to best fit these training examples.

1.2.4.1 ESTIMATING TRAINING VALUES

Recall that according to our formulation of the learning problem, the only training
information available to our learner is whether the game was eventually won or
lost. On the other hand, we require training examples that assign specific scores
to specific board states. While it is easy to assign a value to board states that
correspond to the end of the game, it is less obvious how to assign training values
to the more numerous intermediate board states that occur before the game’s end.
Of course the fact that the game was eventually won or lost does not necessarily
indicate that every board state along the game path was necessarily good or bad.
For example, even if the program loses the game, it may still be the case that
board states occurring early in the game should be rated very highly and that the
cause of the loss was a subsequent poor move.

Despite the ambiguity inherent in estimating training values for intermediate
board states, one simple approach has been found to be surprisingly successful.
This approach is to assign the training value of V;,,, () for any intermediate board
state b to be O(Szzcc-essor(b)), where V is the learner’s current approximation to
V and where Successor(b) denotes the next board state following & for which it
is again the program’s turn to move (i.e., the board state following the program’s
move and the opponent’s response). This rule for estimating training values can

be summarized as

Rule for estimating training values.

Vorain(b) «— V(Successor(b)) (1.1

While it may seem strange to use the current version of V to estimate training
values that will be used to refine this very same function, notice that we are using
estimates of the value of the Successor(b) to estimate the value of board state b. In-
tuitively, we can see this will make sense if V tends to be more accurate for board
states closer to game’s end. In fact, under certain conditions (discussed in Chap-
ter 13) the approach of iteratively estimating training values based on estimates of
successor state values can be proven to converge toward perfect estimates of V,,4in.

1.24.2 ADJUSTING THE WEIGHTS

All that remains is to specify the learning algorithm for choosing the weights w; to,
best fit the set of training examples {(b, V,,4:,(b))}. As a first step we must define
what we mean by the best fit to the training data. One common approach is to
define the best hypothesis, or set of weights, as that which minimizes the squared
error £ between the training values and the values predicted by the hypothesis V.

E= > (Virain(6) = V()

(b, Virain(b))E training examples

CHAPTER | INTRODUCTION 11

Thus, we seek the weights, or equivalently the V, that minimize E for the observed
training examples. Chapter 6 discusses settings in which minimizing the sum of
squared errors is equivalent to finding the most probable hypothesis given the
observed training data.

Several algorithms are known for finding weights of a linear function that
minimize E defined in this way. In our case, we require an algorithm that will
incrementally refine the weights as new training examples become available and
that will be robust to errors in these estimated training values. One such algorithm
is called the least mean squares, or LMS training rule. For each observed training
example it adjusts the weights a small amount in the direction that reduces the
error on this training example. As discussed in Chapter 4, this algorithm can be
viewed as performing a stochastic gradient-descent search through the space of
possible hypotheses (weight values) to minimize the squared error E. The LMS
algorithm is defined as follows:

LMS weight update rule.

For each training example (b, V,,qin (b))

e Use the current weights to calculate V(b)
e For each weight w;, update it as

wi = Wi + 7 Virain (0) — V(0)) x;

Here 7 is a small constant (e.g., 0.1) that moderates the size of the weight update.
To get an intuitive understanding for why this weight update rule works, notice
that when the error (V,,ax(P) — V(b)) is zero, no weights are changed. When
(Virain(b) — \7(b)) is positive (i.e., when V(b) is too low), then each weight is
increased in proportion to the value of its corresponding feature. This will raise
the value of V(b), reducing the error. Notice that if the value of some feature
x; is zero, then its weight is not altered regardless of the error, so that the only
weights updated are those whose features actually occur on the training example
board. Surprisingly, in certain settings this simple weight-tuning method can be
proven to converge to the least squared error approximation to the V., values
(as discussed in Chapter 4).

1.2.5 The Final Design

The final design of our checkers learning system can be naturally described by four
distinct program modules that represent the central components in many learning
systems. These four modules, summarized in Figure 1.1, are as follows:

o The Performance System is the module that must solve the given per-
formance task, in this case playing checkers, by using the learned target
function(s). It takes an instance of a new problem (new game) as input and
produces a trace of its solution (game history) as output. In our case, the

12 MACHINE LEARNING

Experiment
Generator

Hypothesis
(v)

New problem
(initial game board)

Performance
System

Generalizer

Training examples
{<b,V (b]) >, <b2, Vo (b,)>,...]

1" train rrain ‘"2

Solution trace
(game history)

FIGURE 1.1
Final design of the checkers learning program.

strategy used by the Performance System to select its next move at each step
is determined by the learned V evaluation function. Therefore, we expect
its performance to improve as this evaluation function becomes increasingly
accurate.

e The Critic takes as input the history or trace of the game and produces as
output a set of training examples of the target function. As shown in the
diagram, each training example in this case corresponds to some game state
in the trace, along with an estimate V,,.,, of the target function value for this
example. In our example, the Critic corresponds to the training rule given
by Equation (1.1).

o The Generalizer takes as input the training examples and produces an output
hypothesis that is its estimate of the target function. It generalizes from the
specific training examples, hypothesizing a general function that covers these
examples and other cases beyond the training examples. In our example, the
Generalizer corresponds to the LMS algorithm, and the output hypothesis is
the function V described by the learned weights wy, ..., we.

o The Experiment Generator takes as input the current hypothesis (currently
learned function) and outputs a new problem (i.e., initial board state) for the
Performance System to explore. Its role is to pick new practice problems that
will maximize the learning rate of the overall system. In our example, the
Experiment Generator follows a very simple strategy: It always proposes the
same initial game board to begin a new game. More sophisticated strategies

CHAPTER 1 INTRODUCTION 13

could involve creating board positions designed to explore particular regions
of the state space.

Together, the design choices we made for our checkers program produce
specific instantiations for the performance system, critic, generalizer, and experi-
ment generator. Many machine learning systems can be usefully characterized in
terms of these four generic modules.

The sequence of design choices made for the checkers program is summa-
rized in Figure 1.2. These design choices have constrained the learning task in a
number of ways. We have restricted the type of knowledge that can be acquired
to a single linear evaluation function. Furthermore, we have constrained this eval-
uation function to depend on only the six specific board features provided. If the
true target function V can indeed be represented by a linear combination of these

Determine Type
of Training Experience

Games against

experts Table of correct

moves

Games against
self

Determine
Target Function

Board Board\A

— move — value

Determine Representation
Linear function Artificial neural

of Learned Function
A%ynomial
of six features network

Determine
Learning Algorithm
m

Gradient programming
descent

Completed Design

FIGURE 1.2
Summary of choices in designing the checkers learning program.

14 MACHINE LEARNING

particular features, then our program has a good chance to learn it. If not, then the
best we can hope for is that it will learn a good approximation, since a program
can certainly never learn anything that it cannot at least represent.

Let us suppose that a good approximation to the true V function can, in fact,
be represented in this form. The question then arises as to whether this learning
technique is guaranteed to find one. Chapter 13 provides a theoretical analysis
showing that under rather restrictive assumptions, variations on this approach
do indeed converge to the desired evaluation function for certain types of search
problems. Fortunately, practical experience indicates that this approach to learning
evaluation functions is often successful, even outside the range of situations for
which such guarantees can be proven.

Would the program we have designed be able to learn well enough to beat
the human checkers world champion? Probably not. In part, this is because the
linear function representation for V is too simple a representation to capture well
the nuances of the game. However, given a more sophisticated representation for
the target function, this general approach can, in fact, be quite successful. For
example, Tesauro (1992, 1995) reports a similar design for a program that learns
to play the game of backgammon, by learning a very similar evaluation function
over states of the game. His program represents the learned evaluation function
using an artificial neural network that considers the complete description of the
board state rather than a subset of board features. After training on over one million
self-generated training games, his program was able to play very competitively
with top-ranked human backgammon players.

Of course we could have designed many alternative algorithms for this
checkers learning task. One might, for example, simply store the given training
examples, then try to find the “closest” stored situation to match any new situation
(nearest neighbor algorithm, Chapter 8). Or we might generate a large number of
candidate checkers programs and allow them to play against each other, keep-
ing only the most successful programs and further elaborating or mutating these
in a kind of simulated evolution (genetic algorithms, Chapter 9). Humans seem
to follow yet a different approach to learning strategies, in which they analyze,
or explain to themselves, the reasons underlying specific successes and failures
encountered during play (explanation-based learning, Chapter 11). Our design is
simply one of many, presented here to ground our discussion of the decisions that
must go into designing a learning method for a specific class of tasks.

1.3 PERSPECTIVES AND ISSUES IN MACHINE LEARNING

One useful perspective on machine learning is that it involves searching a very
large space of possible hypotheses to determine one that best fits the observed data
and any prior knowledge held by the learner. For example, consider the space of
hypotheses that could in principle be output by the above checkers learner. This
hypothesis space consists of all evaluation functions that can be represented by
some choice of values for the weights wg through we. The learner’s task is thus to
search through this vast space to locate the hypothesis that is most consistent with

CHAPTER | INTRODUCTION 15

the available training examples. The LMS algorithm for fitting weights achieves
this goal by iteratively tuning the weights, adding a correction to each weight
each time the hypothesized evaluation function predicts a value that differs from
the training value. This algorithm works well when the hypothesis representation
considered by the learner defines a continuously parameterized space of potential
hypotheses.

Many of the chapters in this book present algorithms that search a hypothesis
space defined by some underlying representation (e.g., linear functions, logical
descriptions, decision trees, artificial neural networks). These different hypothesis
representations are appropriate for leaming different kinds of target functions. For
each of these hypothesis representations, the corresponding learning algorithm
takes advantage of a different underlying structure to organize the search through
the hypothesis space.

Throughout this book we will return to this perspective of learning as a
search problem in order to characterize learning methods by their search strategies
and by the underlying structure of the search spaces they explore. We will also
find this viewpoint useful in formally analyzing the relationship between the size
of the hypothesis space to be searched, the number of training examples available,
and the confidence we can have that a hypothesis consistent with the training data
will correctly generalize to unseen examples.

1.3.1 Issues in Machine Learning

Our checkers example raises a number of generic questions about machine learn-
ing. The field of machine learning, and much of this book, is concerned with
answering questions such as the following:

e What algorithms exist for learning general target functions from specific
training examples? In what settings will particular algorithms converge to the
desired function, given sufficient training data? Which algorithms perform
best for which types of problems and representations?

e How much training data is sufficient? What general bounds can be found
to relate the confidence in learned hypotheses to the amount of training
experience and the character of the learner’s hypothesis space?

e When and how can prior knowledge held by the learner guide the process
of generalizing from examples? Can prior knowledge be helpful even when
it is only approximately correct?

e What is the best strategy for choosing a useful next training experience, and
how does the choice of this strategy alter the complexity of the learning
problem?

e What is the best way to reduce the learning task to one or more function
approximation problems? Put another way, what specific functions should
the system attempt to learn? Can this process itself be automated?

e How can the learner automatically alter its representation to improve its
ability to represent and learn the target function?

16 MACHINE LEARNING

14 HOW TO READ THIS BOOK

This book contains an introduction to the primary algorithms and approaches to
machine learning, theoretical results on the feasibility of various learning tasks
and the capabilities of specific algorithms, and examples of practical applications
of machine learning to real-world problems. Where possible, the chapters have
been written to be readable in any sequence. However, some interdependence
is unavoidable. If this is being used as a class text, I recommend first covering
Chapter 1 and Chapter 2. Following these two chapters, the remaining chapters
can be read in nearly any sequence. A one-semester course in machine learning
might cover the first seven chapters, followed by whichever additional chapters
are of greatest interest to the class. Below is a brief survey of the chapters.

e Chapter 2 covers concept learning based on symbolic or logical representa-
tions. It also discusses the general-to-specific ordering over hypotheses, and
the need for inductive bias in learning.

o Chapter 3 covers decision tree learning and the problem of overfitting the
training data. It also examines Occam’s razor—a principle recommending
the shortest hypothesis among those consistent with the data.

» Chapter 4 covers learning of artificial neural networks, especially the well-
studied BACKPROPAGATION algorithm, and the general approach of gradient
descent. This includes a detailed example of neural network learning for
face recognition, including data and algorithms available over the World
Wide Web.

o Chapter 5 presents basic concepts from statistics and estimation theory, fo-
cusing on evaluating the accuracy of hypotheses using limited samples of
data. This includes the calculation of confidence intervals for estimating
hypothesis accuracy and methods for comparing the accuracy of learning
methods.

o Chapter 6 covers the Bayesian perspective on machine learning, including
both the use of Bayesian analysis to characterize non-Bayesian learning al-
gorithms and specific Bayesian algorithms that explicitly manipulate proba-
bilities. This includes a detailed example applying a naive Bayes classifier to
the task of classifying text documents, including data and software available
over the World Wide Web.

e Chapter 7 covers computational learning theory, including the Probably Ap-
proximately Correct (PAC) learning model and the Mistake-Bound learning
model. This includes a discussion of the WEIGHTED MAaJoRITY algorithm for
combining multiple learning methods.

o Chapter § describes instance-based learning methods, including nearest neigh-
bor learning, locally weighted regression, and case-based reasoning.

o Chapter 9 discusses learning algorithms modeled after biological evolution,
including genetic algorithms and genetic programming.

CHAPTER 1 INTRODUCTION 17

o Chapter 10 covers algorithms for learning sets of rules, including Inductive
Logic Programming approaches to learning first-order Horn clauses.

o Chapter 11 covers explanation-based learning, a learning method that uses
prior knowledge to explain observed training examples, then generalizes
based on these explanations.

e Chapter 12 discusses approaches to combining approximate prior knowledge
with available training data in order to improve the accuracy of learned
hypotheses. Both symbolic and neural network algorithms are considered.

e Chapter 13 discusses reinforcement learning—an approach to control learn-
ing that accommodates indirect or delayed feedback as training information.
The checkers learning algorithm described earlier in Chapter 1 is a simple
example of reinforcement learning.

The end of each chapter contains a summary of the main concepts covered,
suggestions for further reading, and exercises. Additional updates to chapters, as
well as data sets and implementations of algorithms, are available on the World
Wide Web at http://www.cs.cmu.edu/~tom/mlibook.html.

1.5 SUMMARY AND FURTHER READING

Machine leaming addresses the question of how to build computer programs that
improve their performance at some task through experience. Major points of this

chapter include:

e Machine learning algorithms have proven to be of great practical value in a
variety of application domains. They are especially useful in (a) data mining
problems where large databases may contain valuable implicit regularities
that can be discovered automatically (e.g., to analyze outcomes of medical
treatments from patient databases or to learn general rules for credit worthi-
ness from financial databases); (b) poorly understood domains where humans
might not have the knowledge needed to develop effective algorithms (e.g.,
human face recognition from images); and (c) domains where the program
must dynamically adapt to changing conditions (e.g., controlling manufac-
turing processes under changing supply stocks or adapting to the changing
reading interests of individuals).

e Machine learning draws on ideas from a diverse set of disciplines, including
artificial intelligence, probability and statistics, computational complexity,
information theory, psychology and neurobiology, control theory, and phi-
losophy.)

o A well-defined learning problem requires a well-specified task, performance
metric, and source of training experience.

o Designing a machine learning approach involves a number of design choices,
including choosing the type of training experience, the target function to
be learned, a representation for this target function, and an algorithm for
learning the target function from training examples.

