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We use words to communicate about things and

kinds of things, their properties, relations and actions.

Researchers are now creating robotic and simulated

systems that ground language in machine perception

and action, mirroring human abilities. A new kind of

computational model is emerging from this work that

bridges the symbolic realm of language with the

physical realm of real-world referents. It explains

aspects of context-dependent shifts of word meaning

that cannot easily be explained by purely symbolic

models. An exciting implication for cognitive model-

ing is the use of grounded systems to ‘step into the

shoes’ of humans by directly processing first-person-

perspective sensory data, providing a new methodology

for testing various hypotheses of situated communi-

cation and learning.
Words about the physical world

Over the past few decades computational models of
language processing have focused on symbolic explanation
of linguistic meaning [1–5]. Such models define word
meanings in terms of other symbols, producing circu-
lar definitions much like those found in a dictionary
[6,7]. Humans are less hindered by circular definitions
because we ground many words in physical experience
in the world.

Researchers dissatisfied with purely symbolic models of
word meaning have recently sought to build perceptual
and robotic systems that ground the meaning of words in
terms of their real-world referents. Thus the meaning of
round is grounded in visual features of exemplars, push in
motor control structures, heavy in haptic features, and so
on. These systems provide computational explanations of
how words acquire meaning through their connections
with perception and action.

Although the embodied nature of language has received
significant recent attention [8–10], computational hypo-
theses formulated in terms of specific representations and
processes remain elusive [11]. Models of language ground-
ing open a new avenue for modeling complex crossmodal
phenomena arising in situated, embodied language use.
Such models are of particular interest for understanding
situated language acquisition because early language
tends to be primarily about objects and activities in the
child’s immediate physical environment [12].
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A long-term implication of this work is the possibility
of machines that are able to autonomously acquire and
verify beliefs about the world, and to communicate in
natural language about their beliefs. Early applications
along these lines are already emerging, including auto-
mated generation of weather forecasts [13], large-scale
image database retrieval by natural language query [14],
verbal control of interactive robots, and other human–
machine communication systems [15–20].

This article reviews a range of work, from psychologic-
ally motivated models evaluated mainly for their ability
to explain human behavior, to models which support
the development of autonomous systems. Although the
ultimate goal of many researchers developing such models
is to understand situated language use, at present the
models address only limited aspects of word meaning,
learning and use. Eventually, grammatical and social
aspects of language must also be addressed, but currently
stand as open questions. Furthermore, although some
approaches to word learning are discussed, a more
detailed review can be found in [21].

We begin by reviewing models of perceptual associ-
ation for grounding the meaning of adjectives and spatial
terms, and for studying strategies of infant word learn-
ing. We then shift to models that integrate action with
perception providing richer representations underlying
verbs and nouns.
Associations between words and perceptual categories

Many language grounding systems model the translation
of sensory input into natural language descriptions,
leading to systems that can talk about what they observe
[13,19,22–26]. A common element in these models is that
they sort continuous sensory input represented as feature
vectors into discrete categories that are associated with
labels according to linguistic convention. Categorization
may be modeled through either generative or discrimina-
tive methods (Box 1).

Models of color naming provide a simple example of
word grounding through association with perceptual
categories. Motivated by considerations of human visual
perception, Mojsilovic developed a generative model that
associates color terms with prototypes of color foci defined
over a feature space [26]. This model assumes that the
mapping from words to perceptual categories is fixed. In
reality, however, people use color terms and other property
descriptors in flexible ways that are not easily captured by
static mappings. For example, consider the shift in meaning
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Box 1. Generative and discriminative models of

categorization

Consider a simple model in which visual regions are represented by

two-dimensional feature vectors consisting of measures of height

and width (see Figure I). A discrete shape category (dashed line

circle) can be defined by selecting a prototype vector combined with

a threshold value (a). Two prototypes can ‘compete’ (b), leading

to a category boundary along points of equal distance from both

prototypes (if non-Euclidean distance measures are used, non-linear

boundaries may emerge). Categories may also be modeled by

explicitly representing categorical boundaries. In (c), a linear model,

f(height)ZA* widthCB, encodes the same categorical distinction as

the prototypes in (b). Methods (a) and (b) are examples of generative

models whereas (c) is a discriminative model of categorization (for a

discussion on generative and discriminative methods in a probabil-

istic setting, see [27]). An important advantage of generative models,

as their name suggests, is that they provide a natural basis for

generating examples of categories by using prototypes as targets

for behavioral processes. This may be particularly important in

representations related to motor control that will be used not only to

recognize but also generate output. Some of the most powerful

machine learning methods such as support vector machines [28],

however, operate on discriminative models.
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Figure I. Different kinds of models. (a) and (b) are generative models whereas

(c) is a discriminative model of categorization. See text for details.
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Figure 1. Although red wine is significantly different in color from the context-

independent prototype of ‘red’, a geometric transform is used in Gardenfors’ model

to explain the use of ‘red’ in the context of wines.
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of red in the contexts ‘red car’, ‘red hair’, ‘red skin’, or ‘red
wine’. The color of red wine might be called purple in
another context (e.g. discussing colors of paint), the color
of red hair orange, and so on. Fixed category models such
as Mojsilovic’s are unable to account for such patterns, so
we now turn to a model that addresses context sensitivity.
(a) (c)(b)

L1L2
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Figure 2. (a) is a good example of ‘the circle is above the block’, (b) is a less good

example, and (c) is weaker yet.
Modeling context-dependent word use

Gardenfors proposes a model (illustrated in Figure 1) in
which the meanings of red and white in the context of
wines are produced by starting with fixed context-
independent color prototypes which are linearly projected
into the space of known wine colors [29]. This model
explains how linguistic convention and visual perception
combine to determine word meanings. The choice of red
versus, say, black to describe dark colored wines is in part
owing to convention. Spanish speakers will say ‘vino tinto’
(literally, ‘colored wine’) and in Catalan speakers would
call the same wine ‘vino negro’ (‘black wine’). The choice
of red versus black (tinto or negro) is thus a matter of
arbitrary linguistic convention. Nonetheless the percep-
tual color space constrains possible conventions. Accord-
ing to Gardenfors’s model, it would be impossible for a
language to reverse the use of red and white because the
distance from the context-independent prototype of white
is farther from dark wines than from light ones.
www.sciencedirect.com
A different kind of context dependence appears in the
use of spatial terms such as above. Rather than model
word meaning as having all-or-none applicability, Regier
studied graded acceptability judgments of spatial terms.
English speakers agree that in Figure 2, configuration
(a) is a good example of ‘the circle is above the block’, (b) is
acceptable but not as good (a), and (c) is weaker yet. Two
possible features underlying the meaning of ‘above’ are
the orientations of the lines L1 and L2. L1 connects the
centers of mass of the regions whereas L2 connects the
closest points between regions. L2 is identical in (a) and
(b); L1 is identical in (b) and (c). Thus, the orientation
of neither L1 nor L2 alone can explain the fact that
humans differentiate each of the three configurations.
This example demonstrates that apparently simple words
such as above and near frequently encode non-obvious
features of the environment. Regier developed a model
of spatial relations based on a linear combination of both
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features which was found to closely match human judg-
ments [30]. Furthermore, the model processes simple
movies of objects moving relative to one another to visu-
ally ground words such as through and into. The model
correctly predicted that owing to preferential attention to
endpoints of spatial events, languages will make finer
semantic distinctions when referring to events distin-
guished by their endpoints (e.g. putting a key into a lock)
compared with events distinguished by their initial struc-
ture (e.g. removing a key from a lock) [31].

An important omission in Regier’s model and other
models of spatial semantics [32] is that they are insen-
sitive to functional contexts [33]. For example, if we com-
mand a robotic vacuum cleaner to ‘clean behind the couch’
versus ‘hide behind the couch’, Regier’s model is unable
to systematically model the shift in meaning of ‘behind’.
This limitation suggests important future work on model-
ing grounded spatial semantics.

The models reviewed thus far are based on the idea of
associating linguistic labels with perceptual categories.
They provide insights into linguistically salient percep-
tual features and suggest possible mechanisms under-
lying context-dependent word use. Larger systems have
been developed that model the composition of visually
grounded object descriptors and spatial language to gene-
rate phrases and sentences in scene description tasks
[19,34,35]. Recently, Roy and Mukherjee used percep-
tually grounded word models in a scene description under-
standing system that integrates speech interpretation
with visual context [36], modeling visualattentiondynamics
of situated language comprehension [8,37,38]. Percep-
tually grounded approaches have also recently led to
sensor-grounded computational models of infant language
learning, which we now review.

Models of infant word learning that process

‘first-person-perspective’ sensory data

The implementation of sensor-grounded language sys-
tems opens the door to a new kind of cognitive model that
is able to directly process recordings from natural human
environments without the need for manual transcription
or coding. These systems are able to ‘step into the shoes’
of humans and learn from natural sensory data. The first
effort of this kind is the cross-channel early lexical learn-
ing (CELL) model which learns to segment and associate
spoken words with acquired visual shape and color cate-
gories based on speech and video input [39] (Box 2). The
model provides a computational account of how visual
context and speech constrain the process of word learning.
The model solves a form of cross-situational learning
[42], as evidence from numerous situations must be com-
bined to learn stable audio-visual lexical items. In evalu-
ations, CELL successfully acquired a vocabulary of
perceptually grounded words by listening to untran-
scribed infant-directed speech paired with video images
of everyday objects.

A simplifying assumption in CELL is that visual input
consists of only one object at a time. In reality, infants
face a much more difficult learning problem because any
natural environment is typically cluttered with numerous
objects, raising the question of how a language learner is
www.sciencedirect.com
to decide which (if any) of the objects are being referred
to by language [43]. Yu, Ballard and Aslin developed a
system that processes spoken input paired with visual
images of multiple objects combined with the speaker’s
eye gaze direction [44]. In an experiment, speakers were
recorded as they narrated stories in their own words based
on illustrations in a book for young children. The illu-
strations contained multiple objects so that for any
co-occurring speech there were multiple visible referents.
A head-worn eye tracker recorded detailed eye-movements
of the speakers which were automatically analyzed to
detect fixation points at which the speaker’s eyes
remained focused on a particular part of the visual
scene. The location of fixation points was used to select
specific regions from the visual input, which were then
subjected to crossmodal associative learning similar to
CELL. The use of eye gaze reduced ambiguity of possible
referents and enabled the model to successfully acquire a
visually grounded lexicon. This model is a significant exten-
sion beyond CELL in that it makes use of social information
that is known to be crucial in language acquisition [45].

These models enable fine-grained quantitative study
of various aspects of situated language learning. CELL
was used to quantify the impact of visual context for
segmenting speech by re-running a ‘blinded’ version of the
model. Similarly, the impact of eye gaze on word learning
may be measured using Yu’s model by re-running its
association learning algorithms without the benefit of
eye-gaze input. Regardless of the cognitive plausibility of
each model at the level of specific representations and
algorithms, sensor-grounded models provide an important
new methodology for understanding the nature of sensory
input from which infants learn.

Let us now shift our attention to a particularly import-
ant class of words: verbs.

Richer representational structures: grounding verbs in

physical action

Verbs that refer to physical actions are naturally grounded
in representations that encode the temporal flow of events.
Siskind developed a perceptually grounded model of verb
meaning as part of a system that analyzes video sequences
of human hands manipulating colored blocks [46]. The
model uses visually derived features that express the
contact, support and attachment relationships between
hands, blocks and tabletops. This choice of relationships is
motivated by Talmy’s theory of force dynamics [47]. The
semantics of basic verbs are modeled using temporal
schemas that define expected sequences of force dynamic
interactions between objects. For example, the meaning
of ‘hand picks up block’ is modeled by the sequence:
table-supports-block, hand-contacts-block, hand-attached-
block, hand-supports-block. Temporal relations between
force dynamics features are specified using ‘Allen
relations’, which encode 13 possible logical relations
between pairs of time intervals [48]. For intervals A and B,
Allen relations include: A ends after B starts, A ends
exactly as B starts, A and B start together but A ends first,
and so on. Time durations are not specified by the
schemas, enabling the model to classify observations
across varying timescales. Higher level actions are defined
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Box 2. A model of learning words from sights and sounds

The cross-channel early lexical learning model or CELL is a com-

putational model of sensor-grounded word learning [39] that learns to

segment speech at word boundaries, form visual categories, and

acquire semantically appropriate associations between spoken words

and visual categories. Speech recordings were made of six mothers as

they played with their pre-verbal infants using common toys. These

recordings were paired with video of the same objects recorded by a

robot, providingmultisensory input for themodel (Figure Ia, next page).

A recurrent neural network (RNN) [40] extracts phonemic features

from input speech; (b) shows the representation of, ‘Oh, you can make

it bounce too! ’ The brightness of each row corresponds to the prob-

ability of 40 English phonemes as they evolve over time from

left to right. Columns with multiple bright bands indicate phonemic

confusions.

Visual features used for shape analysis are illustrated in (c). The

silhouettes of the objects are found using background color segmen-

tation. The distance, d, and angle, q, formed by each pair of points

along the boundary of silhouettes, are measured. Distances are

normalized by the largest distance between any two points on the

object’s boundary. Thus, the two-dimensional vector remains con-

stant as the object is rotated in-plane and rescaled.

All pairs of boundary points are analyzed and aggregated in a two-

dimensional histogram. Several objects from the infant experiment

are shown in (d) along with their silhouettes and shape histograms

(right column). Values of d and q are binned along the vertical and

horizontal axes of the histograms. The three-dimensional structure of

an object is captured by sets of histograms derived frommultiple views.

On the assumption that caregivers tend to repeat salient words that

refer to the environment, speech and images are analyzed together to

find recurrent segments of speech in similar visual contexts (a). A first-

in, first-out short-term memory (STM) stores the last five spoken

utterances paired with co-occurring shapes. Because there are no

acoustic equivalents of spaces between printed words in natural

speech, CELL systematically compares all pairs of segments of speech

across all pairs of utterances in STM. When a recurring segment of

speech is found, the shape histograms that co-occurred with the

segments are compared. If the visual contexts are also similar, a

crossmodal recurrence is detected. The recurrent speech segment and

shapemay be thought of as the system’s guess of a possible word and

its meaning, a ‘lexical candidate’. Over time, lexical candidates found

in STM accumulate in long-term memory (LTM).

An example of a lexical candidate is the speech segment bounce

paired with the shape of a ball (e). This candidate would be produced if

the speech segment bounce occurred within multiple utterances in

STM in the context of similarly shaped round objects.

Lexical candidates are unreliable for two reasons. First, as sensory

processes are prone to noise, many detected recurrences will lead to

incorrect lexical candidates. Second, recurrence analysis will often

generate semantically inappropriate candidates. For example, if a

caregiver repeats ‘yeah’ while playing with a toy dog, the semantically

incorrect hypothesis of ‘yeah’ paired with dogs will be obtained. To

address these problems, only clusters of lexical candidates with non-

coincidental crossmodal structure are retained. Visual and auditory

thresholds are combined with each candidate prototype in LTM to

generate crossmodal categories. Mutual information (MI) [41] is used

to measure the association strength between the resulting speech and

visual category. The MI for a range of possible auditory and visual

thresholds is computed, yielding a MI surface. In (f ), the MI surface for

the ‘yeah’-to-dog pairing is low, but the ‘shoe’-to-shoe pairing yields a

high peak value. Lexical candidates that lead to high MI values such as

shoe in (f ) constitute the final output of the model.

In evaluations, CELL learned a small vocabulary of shape names

such as ball, shoe and truck from six different mothers’ input. It also

learned several semantically appropriate examples of onomatopoeic

sounds such as ‘ruf-ruf’ for dogs and ‘vroooom’ for cars. In com-

parative tests in which the systems was ‘blinded’, a lack of visual input

led to over a 50% drop in word discovery accuracy, demonstrating the

value of crossmodal structure for word learning.

Although this initial experiment focused solely on learning shape

names, the recurrence and crossmodal clustering algorithms extend

without modification to learn names for multiple perceptual domains.

CELL has been integrated into an interactive word learning robot that

learns to use color and shape names to interpret and generate two-

word descriptive phrases of objects [17].
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in terms of these lower level schemas. Thus move is
defined as the ordered sequence of the schemas corre-
sponding to ‘pick up’ followed by ‘put down’.

The use of logical relations to encode sequences
makes it difficult to use Siskind’s approach to distinguish
manners of motion that underlie the difference in meaning
of word pairs such as push versus shove. Bailey et al.
addressed this issue by developing a system that learns
verb semantics in terms of action control structures, called
‘x-schemas’, which control sequences of movements of a
simulated manipulator arm [49]. X-schemas organize
action primitives into networks that allow for sequential,
concurrent, conditional and repetitive action. A set of
control parameters specify high level attributes of
x-schemas such as force and direction. A verb is defined
by its associated x-schema and control parameters. The
verbs pick up and put down are distinguished by the
structure of their associated x-schemas, whereas push and
shove are distinguished by different force or velocity
control parameters applied to the structurally identical
x-schema. Narayanan used x-schema representations
as a basis for interpreting physical metaphors in news
stories (e.g. ‘the economy has reached rock bottom’) [50].
Narayanan’s approach is unique in its attempt to model
relatively abstract semantics in terms of lower level
sensory-motor representations, inspired by observations
of the prevalence of physical metaphor in language [51].
www.sciencedirect.com
Verbs such as ‘pick up’ refer to both the perception and
control of action. Siskind’s model watches video and recog-
nizes actions corresponding to verbs whereas Bailey’s
model is conceived as a controller that generates actions
for a simulated robot arm. An interesting future direction
will be to bring these two lines of research together. One
possibility is to link perceptual and control schemas using
some sort of bridging structure. An alternative is to deve-
lop a single action–perception representation that unifies
functions of both models. Interestingly, these options
correspond to distinct current hypotheses regarding the
neural representation of actions and objects [52,53].

The intertwined nature of perception and action is
not limited to the domain of verbs. To see the relevance
of action in grounding nouns, consider the difference
between the meaning of ‘round’ versus ‘ball’. Perceptually
grounded models such as CELL are unable in principle to
distinguish their meanings. The final model we review
integrates action and perception in an interactionist
representation of verbs, adjectives and nouns.
Integration of action and perception in grounding nouns

Roy developed a framework for grounding words in terms
of structured networks of motor and sensor primitives.
This approach arose from building a series of conversa-
tional robots, the most recent of which is Ripley, a robotic
manipulator that is able to translate spoken commands
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such as ‘hand me the blue one on your right ’ into situated
action (Figure 3) [54]. The robot maintains a dynamic
‘mental model’, a three-dimensional model of its immedi-
ate physical environment (including its table top work
surface, the robot’s own body, and the location of the
human communication partner) that it uses to mediate
perception, manipulation planning and language. The
contents of the robot’s mental model may be updated based
on linguistic, visual, or haptic input. The mental model
endows Ripley with object permanence, remembering the
position of objects when they are out of its sensory field.
www.sciencedirect.com
From the robot’s point of view, the meaning of an object
in its mental model is a multimodal sensory expectation:
if the robot looks at the appropriate location, its visual
system expects to find a visual region; if the robot reaches
to the same location, it expects to touch and grasp the
object. Furthermore, the planner expects control over
object locations once they have been grasped. Thus mani-
pulation updates location parameters of objects in the
mental model, leading to systematic shifts in future visual
and haptic expectations. Violations of expectations cause
the robot to update its mental model.
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(b)(a)

Figure 3. Ripley, a conversational robot. (a) Ripley hands its human communication

partner an apple in response to the command, ‘hand me the one on your right’.

(b) The top image shows what Ripley sees through its head-mounted video camera

when looking down at the table. Thin white lines indicate image regions that the

robot’s vision system has identified as objects. The second image shows the

contents of Ripley’smentalmodel, a rigid body simulator that is dynamically kept in

alignment with visual and haptic input. The bottom image shows an alternative

visual perspective within the same mental model that the robot is able to generate

by moving its ‘imagined’ perspective by shifting a synthetic camera within the

physical simulator. A model of the robot’s own body is visible in this view. The

ability to shift visual perspective is used by the robot to distinguish, for example,

‘my left’ versus ‘your left’. The robot uses a face detection algorithm to track the

human’s physical position and uses this position to determine the appropriate

perspective to simulate to understand ‘my left’.

Box 3. Questions for future research

† How might computational models of planning and discourse

[59–61] be combined with models of sensory-motor processes to

create models of physically situated discourse?

† How can we extend models of language grounding to study the

role of situation models in conversation [62,63] – in particular the

role of perception of shared physical environments in helping

maintain alignment [64,65] between communication partners’

individual models?

† How can words that refer to physical affordances be modeled? For

example, the sensory-motor grounding of the verb open depends on

both the physical structure of a situation and an understanding of

goals to be achieved.

† How might sensory-motor grounded models of language be aug-

mented with metaphor or analogy-making processes [66] to explain

the semantics of various physical metaphors that are ubiquitous in

language [51]?

† Dropping prices and miniaturization of digital sensing and record-

ing technology mean that extremely dense recordings of longi-

tudinal language development will soon become feasible – perhaps

tens of thousands of hours from single subjects. With the demand

for increased longitudinal language development data [67] soon

met, however, the resulting rise in cost of manual annotation of

speech and especially video will become unaffordable. How can

computational models of language grounding be scaled to analyze

massive multisensory observation recordings and empirically test

hypotheses of language acquisition?
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Ripley’s representations and algorithms led to an
approach that grounds the meaning of verbs, adjectives
and nouns referring to physical referents using a unified
representational framework [7]. Verbs are grounded in
sensory-motor control programs similar to x-schemas.
Adjectives describing object properties are grounded in
sensory expectations relative to specific actions. This is a
significant extension of earlier models of perceptual
grounding. For example, the meaning of red is not simply
a color category, but rather a color category linked to the
motor program for directing active gaze towards an object.
Heavy is grounded in haptic expectations associated with
lifting actions. In this way, all perceptual properties are
related to appropriate actions. Locations are encoded in
terms of body-relative coordinates. Objects are repre-
sented as bundles of properties tied to a particular location
along with encodings of motor affordances for affecting the
future location of the bundle. In effect, the meaning of ball
according to this model subsumes both the meaning of
round (which is one of its expected properties along with
color, size, etc.), and all of the actions that may affect the
ball. This computational model is consistent with Piaget’s
notion of schemas [55] (see also [56,57], and provides a
representation that distinguishes and relates the seman-
tics of words for objects, their properties, and actions that
can be taken on them.
www.sciencedirect.com
Conclusions

To summarize, researchers have made significant recent
progress in modeling the interactions between word use,
perception, and action. We have reviewed models of color
and shape naming, spatial language, verbs and nouns, all
of which are able to relate words to real-world referents,
often providing novel explanations of context-dependent
word use. The models are at a very early stage and address
only a small fragment of language. Many difficult research
challenges lie ahead to bring these ideas together with
other aspects of language such as grammatical compo-
sition and the functional use of language in social contexts
(see Box 3 for some examples).

The numerous open challenges of language grounding
provide an opportunity to re-unite sub-fields of artificial
intelligence (AI). Since the 1970s, many AI researchers
have shifted their focus to sub-fields of AI with well
defined goals such as computer vision, parsing, informa-
tion retrieval, machine learning and planning. Language
grounding provides the impetus for AI researchers to
integrate these sub-fields to address – and exploit the
capability of building machines that can converse about
what they observe and do in human-like ways. With the
continuing drop in cost of sensor and robotic technology,
and the trend towards ubiquitous situated computing [58],
models of language grounding may pave the way to excit-
ing new forms of situated human–machine communication.

From a cognitive modeling perspective, each model
I have reviewed suggests possible strategies to address
aspects of language grounding. We cannot expect that
such models and systems will directly explain how people
think and communicate: both design and implementa-
tion differ dramatically. Nonetheless it seems clear that
these computational models, together with behavioral
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and brain imaging studies, can provide tangible steps
towards such explanations.
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