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ABSTRACT
Modern day datacenters host hundreds of thousands of servers that
coordinate tasks in order to deliver highly available cloud comput-
ing services. These servers consist of multiple hard disks, memory
modules, network cards, processors etc., each of which while care-
fully engineered are capable of failing. While the probability of
seeing any such failure in the lifetime (typically 3-5 years in indus-
try) of a server can be somewhat small, these numbers get magni-
fied across all devices hosted in a datacenter. At such a large scale,
hardware component failure is the norm rather than an exception.

Hardware failure can lead to a degradation in performance to
end-users and can result in losses to the business. A sound under-
standing of the numbers as well as the causes behind these failures
helps improve operational experience by not only allowing us to
be better equipped to tolerate failures but also to bring down the
hardware cost through engineering, directly leading to a saving for
the company. To the best of our knowledge, this paper is the first
attempt to study server failures and hardware repairs for large data-
centers. We present a detailed analysis of failure characteristics as
well as a preliminary analysis on failure predictors. We hope that
the results presented in this paper will serve as motivation to foster
further research in this area.

ACM Categories & Subject Descriptors: C.4 [Performance of
systems]: Reliability, availability, and serviceability
General Terms: Measurement, Reliability
Keywords: datacenter, failures

1. INTRODUCTION
Modern day datacenters (DC) host hundreds of thousands of

servers [3] networked via hundreds of switches/routers that com-
municate with each other to coordinate tasks in order to deliver
highly available cloud computing services.

Unfortunately, due to economic pressures the infrastructure that
these services run on are built from commodity components [8].
As a result, the hardware is exposed to a scale and conditions that
it was not orignially designed for. The servers consist of multiple
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hard disks, memory modules, network cards, processors etc., each
of which while carefully engineered are capable of failing. While
the probability of seeing any such event in the lifetime (typically
3-5 years in industry) of a server can be somewhat small, across
all machines 1 hosted in the datacenter, the number of components
that could fail at any given instant is daunting. At such a large
scale, hardware component failure is the norm rather than an ex-
ception [4].

Hardware failure can lead to a degradation in performance to
end-users due to service unavailability [6] and can result in losses
to the business, both in immediate revenue [20] as well as long-
term reputation [16]. The first impact of this is that it puts an in-
creased onus on the software stack via added complexity for deal-
ing with frequent hardware failures [14]. Even without regard to
the increases in complexity of software [9], diagnosing and servic-
ing these faults, deemed important to DC operation increases the
operational expenditure (OPEX) [4]. A sound understanding of the
number of failures as well as the causes behind them helps im-
prove operational experience by not only allowing us to be better
equipped to tolerate failures but also bring down the hardware cost
through engineering. Further, if we develop a model that allows
us to proactively predict failures, this can lead to moving workload
and data off of such a server in time to avoid any possible service
disruption.

Consider an alternate model of building datacenters by pack-
ing servers in a serviceless module, e.g., a container [19]. As
these carefully engineered modules would contain redundant parts
to cope with hardware failure it is imperative to know relatively ac-
curate failure characteristics to avoid overprovisioning. Thus, we
would not only want to know the reliability of individual compo-
nents in order to lower the cost of running cloud computing in-
frastructures, but we would, in fact, like to evolve a composable
reliability model so that we can use it to better design future in-
frastructures. Such a hierarchical reliability model would help us
analyse the impact of whole DC failures, individual rack or con-
tainer/pod failures, server failures, networking equipment failure
as well as individual component failure. This paper focuses on one
part of the puzzle, understanding server failures.

The failures that we observe are a complex function of a large
number of variables, viz., manufacturing process, deployment en-
vironment conditions, workload etc., analogous to a random exper-
iment. In this paper we aim to establish sound observations to the
outcome of such an experiment. In doing so we build upon recent
large scale studies on hard disk [15, 17] and memory module fail-
ure characteristics [18]. While these recent efforts have focussed
on detailed analysis of component failures, in this paper we wish
to tie together component failure patterns to arrive at server failure

1we use the terms machine and server interchangeably in this paper
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rates for datacenters. As a first step this can be used by academics
to model a large number of design solutions [19, 7, 12, 1]. In addi-
tion this is the first step to begin reasoning about the causes behind
these observations. While we also present a preliminary analysis
on predicting failures, the main aim of this paper is to characterize
the faults seen in large cloud computing infrastructures. We make
the following four important contributions towards that goal.

• This paper is the first attempt to characterize server failures
for large data centers. We present a detailed analysis of fail-
ure characteristics and explore the relationship between the
failures and a large number of factors, for instance, age of
the machine, the number of hard disks it has, etc.

• This is the first work to quantify the relationship between
successive failures on the same machine. We find that the
empirical data fits an inverse function with high significance.

• We perform the first predictive exploration in a datacenter to
mine for factors that explain the reason behind failures. We
find, for instance, that the datacenter where a server is located
is a great indicator of failures and so is the manufacturer.

• We show empirically that the reliability of machines that
have already seen a hardware failure in the past is completely
different than those of servers that have not seen any such
event.

Section 2 describes how we gather and analyse the datasets used
in this study. We begin (Section 3) by describing how we de-
tect hardware faults along with the high-level characteristics of the
hardware failures and the associated cost of servicing them. We
then present a preliminary analysis (Section 4) of various predic-
tion techniques to explain observed failure characteristics in our
datacenters. We then follow it up with a description of related work
(Section 5) before concluding (Section 6).

2. DATACENTER CHARACTERIZATION
We begin by describing the nature of hardware found in datacen-

ters. While we have made no attempt to handpick a particular flavor
of machines either by composition or by use, we have no means of
either verifying or guaranteeing that the characteristics described
next are either typical or representative of datacenters elsewhere.
Such studies while important, can only be done by either collabo-
rating with hardware vendors (something we are exploring in the
future) or by subjecting identical workloads to varying kinds of
hardware (something we do not practice currently).

2.1 Data Sources and Problem Scope
Ideally we would have access to detailed logs corresponding to

every hardware repair incident during the lifetime of the servers.
We would also know when the servers were comissioned and de-
comissioned. However, without the proven need for such detailed
logging no such database exists. Thus, in the absence we resort to
combining multiple data sources to glean as much information as
we can.

The data sources used in this study were originally put in place
with a separate goal and were not necessarily aimed at precise
tracking of each of the quantities we are interested in. As a result
there is no single piece of database that tracks multiple quantities
of interest, i.e., the inventory of machines and their unique ids, the
composition of machines (number of hard disks, memory modules
etc.), trouble tickets, hardware repairs, temperature and other envi-
ronmental metrics, performance numbers for the server including

cpu, memory load etc. One of the main challenges we face is to
combine together disparate data sources that were originally meant
for a different purpose and naturally had varying levels of impor-
tance to detailed and accurate logging of the fields that is of most
interest to us. Furthermore, with organizational changes it becomes
difficult to track the original owner of the data source in case of
discrepancies. In particular there are three sources of data that is of
interest to us and we describe them next.

The first piece of data is the inventory of machines. This con-
tains a variety of information regarding the servers that are used for
cloud computing. This includes a unique serial number to identify
a server, date when an operating system was installed on the server,
the datacenter where this server is located and what role the ma-
chine is commissioned for. There are over 50 fields and that gives
us rich statistical variables to mine for and we describe this later in
the paper. We use the serial number as a unique identifier for the
machine id.

The next piece of information that is critical is the hardware re-
placements that take place. This data is maintained separately. This
is part of the trouble tickets that are filed for hardware incidents.
Each ticket has a variety of other information including the date
when a fault was recorded and ticket was filed, when was it ser-
viced and what server does that correspond to. It also has infor-
mation on how the fault was fixed i.e. replacing a disk etc. While
there are a variety of fields present, a few key fields are missing too.
For instance, if a hard disk was replaced in a RAID-6 array, there
is no information maintained on which of the 6 hard-disks was re-
placed. Often details about the hard-disk itself are not maintained,
for instance, SATA vs. SAS. Furthermore, we do not know if re-
placing the hardware actually fixes the problem. It is possible that
a failure elsewhere in the system was raising false alarms that lead
us to replacing the wrong piece of hardware. In this paper we are,
however, interested in first establishing quantitatively the hardware
replacements for our cloud computing infrastructure. In ongoing
work we are developing models to understand how multiple hard-
ware replacements may in fact correspond to a common ”fault”.

The reader may note that owing to possible human error in record-
ing failure events, we may underrepresent the total set of hardware
replacements in our infrastructure. Thus any corresponding cost
estimate provided in this paper will be a lower bound on the actual
cost. Similarly, replacing a hardware component does not guaran-
tee that it is indeed a hardware failure. We rely on detailed diag-
nostics to declare whether a hardware component is no longer fit to
be under deployment in our servers. Thus, we use the words failure
and repair event interchangeably, similar to other researchers [17].

Using the above piece of data we can calculate the total number
of hardware replacements seen in a given time on a given server.
We can also understand patterns of failure/repair events and the rel-
ative frequency across different components. However, these two
data sources are still not enough to understand the failure rate of
individual components. In order to calculate that, ideally we would
like to track the life span of individual components i.e., hard disks,
memory modules etc. However, that is not available and we need
an alternate method. We can get information about the configura-
tion of machines, for instance, the number of hard-disks, memory
modules etc. from a third data source. In this data source each com-
ponent (e.g., hard disk) has a serial-id and an associated server-id
where it is placed. We use this to loosely understand the configura-
tion of each machine. Thus, at this point we know how to combine
detailed information on the server, its configuration, and the hard-
ware events that are recorded over time.

There are numerous challenges with the coverage of machines
and the accuracy of the data. For instance, there are repeated serial
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Figure 1: Age profile of servers.

numbers, etc. that are mostly due to human error that cannot be
avoided. However, we try our best to present data that is heavily
sanitized by careful human intervention and interpretation of the
raw data. In doing so we restrict out dataset to a smaller but more
consistent size and report our findings below. Finally, this data is
only available for a 14 month period. In the future we are looking
to extend this dataset. However, to the best of our knowledge, this
is the first study that looks at such a large number of servers in
production use and tries to understand the reliability of servers.

Our data does not contain sufficient information to help us un-
derstand single points of failures for entire racks or datacenters. In
this study, we focus on server reliability and the factors that affect
it. In an ongoing effort we are building a whole datacenter relia-
bility model. Every repair of a hardware incident contribute to the
OPEX, thus, understanding server reliability is important. How-
ever, that in itself is only meaningful for current datacenter opera-
tions. What if we are interested in cloud computing infrastructures
of the future and as part of that are trying to decide how to build
servers? We would like to know what components to pick to build
that. Thus, we would like to understand the failure patterns for each
component. Of course, deriving this from an existing operational
infrastructure implies that we are ignoring any dependencies. Nev-
ertheless, in this work our aim, as mentioned earlier, is to arrive
at a first cut at the repair numbers and in ongoing and subsequent
efforts to mine the root causes within.

2.2 Server Inventory
Here we describe the configuration and nature of machines used

in the dataset. The description includes various factors about the
machines, including their age profile, configuration etc. In order
to maintain privacy, data is normalized wherever appropriate. The
goal of this section is to present enough details to allow for a sci-
entific comparison of analogous results against other datasets that
the reader may have access to. We also hope that it will serve as a
model to base academic studies on.

• Subset of machines.
We have details on part replacement for over 100,000 servers
(exact number withheld). This includes details, for instance,
when a hard disk was issued a ticket for replacement, and
when was it replaced and the details of the server correspond-
ing to it. The collection of servers span multiple datacenters
in different countries (and continents).

Figure 2: Disk profile of servers.

• Age profile of machines.
The age of the machine when a fault/repair happened is of
interest to us. The age can be calculated on any given day
and we report the age of the server (in years) at the begin-
ning of our database period as shown in Figure 1. The X-
axis shows the age in years and for each such age group, the
Y-axis shows the percentage of servers that fall into that cat-
egory. Around 90% of the machines are less than 4 years
old. This is in accordance with the company policy of re-
tiring machines at the end of 3 years. However, we do find
machines that are, for instance, 9 years old 2.

• Machine configuration.
We next describe the composition of these servers. On an
average there are 4 disks per server. However, there is a huge
variation as shown in Figure 2. 60% of the servers have only
1 disk. However, 20% of the servers have more than 4 disks
each. We also calculated the profile of number of memory
modules in a server and the results are shown in Figure 3.
Average number of memory modules per server is around 5.
As we can see, a majority of servers have 4 modules. But
there are servers with over 16 modules too.

3. CHARACTERIZING FAULTS
As mentioned earlier, there is no easy way to know when a fault

occured. However, we do track when a repair event takes place
and a ticket is filed. Since tracking of tickets and sending person-
nel/administrators to fix the fault contributes to the OPEX it can be
used as a good substitute. Please note, as mentioned earlier, that in
the current work we are interesting in quantifying the number and
types of hardware repair events. Arriving at detailed explanation
behind the cause of these failures is part of an ongoing effort. Thus,
a faulty RAID controller, that manifests itself as multiple hard disk
faults will be counted as multiple hard disk failures in our current
work, where the focus is on understanding how much money we
spent in repairing hardware faults.

3.1 Identifying Failures
We begin by describing the total set of repair events that we saw

in the 14 month period across our set of machines. To preserve data

2Due to regular purchase as well as retirement of servers, the graph
does not look much different when computed at the middle as well
as end of the database period.
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Figure 3: Memory module profile of servers.

privacy, all numbers reported from henceforth, will be normalized
to 100 servers. We next describe the number of hardware faults,
the servers they were incident on etc., all after applying the same
scale-down factor, i.e., by scaling down the reported values as a
percentage (i.e., over 100).

We saw a total of 20 replacements in the 14 month period. How-
ever, these replacements were all contained in around 9 machines.
9 machine failures in 14 months translates to an annual failure rate
(AFR) of around 8%. Let us now consider only the subset of ma-
chines that saw at least 1 repair. The average number of repairs seen
by a repaired machine is 2 (not shown here). Thus, 92% of the ma-
chines do not see any repair event but for the remaining machines
(8%) the average number of repairs per machine is 2. Figure 4
shows the distribution of the percentage of servers against a given
number of repairs. Thus, over 50% of the repaired servers see ex-
actly 1 repair. The ”knee” of the curve is around 3, thus, 85% of
the repaired servers see less than 4 repairs.

3.1.1 Cost of these faults
Here we examine the cost of machine failures and hardware re-

pairs. The first cost is the associated downtime of the machines. In
addition it costs the IT ticketing system to send a technician to the
fault site to perform a repair operation. Finally, hardware repairs
cost in terms of the hardware component being repaired/replaced.
Assuming the same numbers that Google reported [4] where each
repair costs $100 for the technician’s time and 10% of the server
cost ($2,000) we arrive at a repair cost of $300. Given an AFR of
8% this amounts to close to 2.5 million dollars for 100,000 servers.
It is important to know the relative reliability of different available
choices to order from a catalogue. For instance, at $300 per repair,
in 6 repairs the cost of repairs is already close to that of purchasing
new hardware. Such considerations require a sound understanding
of the failure characteristics, the focus of this paper.

3.2 Classifying Failures
Of these replacements/faults, a majority (78%) were for hard

disks, followed by a few (5%) due to raid controller and even fewer
(3%) due to memory. However, 13% of all replacements came
from a collection of all other components with no single component
dominating. Thus, we can cut down substantially on the number of
failures by improving the reliability of hard disks 3. However, once

3Assuming independent failures in different components.

Figure 4: Distribution of repairs per server.

we do that there is no single component that dominates in failure
rate.

The above analysis calculates the frequently failed components
and the cause for hardware repair. This analysis is helpful in calcu-
lating the money spent in repairing hardware as well as approximat-
ing availability by calculating the associated downtime etc. Let us
revisit the serviceless datacenter model once again. In this model,
as soon as any hardware component in a server fails, we declare
the server as ”dead”. In order to understand the resulting reliability
of the server with this assumption, we need to look at existing data
in a new fashion. Instead of counting all hardware fault belonging
to a machine we now only look for the first hardware fault that is
incident on a server. We use this to understand what component
triggers the first hardware fault on a server. An analysis yields the
following results. 70% of all server failures is due to hard disks, 6%
due to RAID controller and 5% due to memory and the rest (18%)
due to other factors.

Thus, hard disks are the not only the most replaced com-
ponent, they are also the most dominant reason behind server
failure.

If we look at the total number of components of each type, i.e.
disk, memory, RAID etc. and look at the total number of failure of
the corresponding type, we can get an estimate of the component
failure rate. Using this technique we arrive at the following figures.
2.7% of all disks are replaced each year. This number is just 0.7%
for raid controllers and only 0.1% for memory, If we consider all
other components in an aggregate ”other” category, then the failure
rate for those components is 2.4%. Note however, that this is just
an approximation. We do not know, for instance, that which of the
many different hard disks in a RAID array fail. We arrive at these
numbers by dividing the total number of replacements with the to-
tal number of components. This can result in double counting disks
in a RAID array. Thus, the values reported here are an upper bound
on individual component failure rate. If multiple repair events hap-
pen to be for the same disk ("logical") then the actual component
failure rate will be lower than what we observe above. However,
please note that this would still lead us to a correct calculation of
the administrative overhead in repairing these machines 4.

Given that hard disks are the number one failing component we
decided to investigate its failure characteristics further. We looked
at clusters 5 of servers. For each of those, we calculated the total
number of servers that saw at least one disk related repair event in

4Assuming the current service model. Results will be different if
we consider a serviceless DC model [19]
5A cluster here refers to a logical set of servers put to similar
tasks/workloads but not necessarily similar in configuration or even
geographical location.
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Figure 5: Age distribution of hard disk failures.

the 14 month period. This percentage was significantly high for the
top 5 properties (i.e. largest sized clusters), between 11% and 25%
of all servers see at least 1 disk event in the given period (not shown
here). Note that this is higher than the aggregate failure rate we saw
earlier, i.e. 8%.

We calculate the age at which a disk failure occured and the ag-
gregate results are shown as a histogram in Figure 5. Here the
X-axis shows the age of the server (in years) when a hard disk fails
and the Y-axis shows the percentage of servers that see a hardware
failure at a given age. Thus, there are very few (5%) young servers
(<1 years) that see any disk failure. The number jumps slightly
higher (12%) as the machines are slightly old, i.e., 1 year old. Fi-
nally, 25% of the machines that see a hard-disk fail are at least 2
years old. Please note, however, that due to lack of sufficiently de-
tailed data, we cannot use this figure to calculate the failure rate
at different ages of a hard disk. In the next section we will use an
alternate technique to closely monitor all hardware events occuring
on a server.

3.3 Young Servers
One limitation of our dataset is that it is a 14 month slice in time

of hardware repair events as opposed to the entire lifetime of the
servers. Thus, there is no direct way of knowing all the repairs that
happened to the machines prior to day 1 of our dataset. Similarly,
we do not know the fate of the servers beyond the 14 month win-
dow we are observing. One approach is to do a detailed and careful
modeling exercise to understand the failure trends beyond the 14
month period. Owing to the inherent inaccuracies that might intro-
duce in addition to the complexity in the first place we suggest an
alternate mechanism. We focus on those machines that have been
brought online or put into production during the 14 month period.
This ensures that we will be able to track all hardware repairs on
these machines.

We show the cumulative number of failures that the servers see
as a function of age (in weeks) in Figure 6. The Y-axis has been
omitted to maintain data privacy. As can be seen, the S-curve is
a great fit (the R2 value for the fit was 0.973). R2 is a measure
of variance in the dependent variable that is accounted for by the
model built using the predictors [13]. In other words, R2 is a mea-
sure of the fit for the given data set. (It cannot be interpreted as
the quality of the dataset to make future predictions). The S-curve
has the following characteristic: in initial stage of growth it is ap-
proximately exponential; and then, as saturation begins, the growth
slows, eventually remaining constant. This in our context indicates

Figure 6: Number of repairs against age in weeks.

that, with age, failures grow almost exponentially and then after a
certain saturation phase grow at a constant rate, eventually tapering
off. Young disks
We note that the overall disk failure ratio (averaged over all servers)
is 2.5%, very close to the aggregate disk failure ratio of 2.7% seen
earlier. This is unlike the observation that Schoreder et.al [17]
made, where they found steadily increasing failure rate of disk as a
function of age. However, we do not have fine-grained data analo-
gous to them in order to do a complete comparison.

Memory modules
We also looked at the reliability of memory modules (DIMM).
DIMMs showed a very small failure rate (<0.03% AFR) in the first
year. When we looked at all servers the CFR for DIMMs was still
low (0.1%). Schroeder et. al [18] observe a much higher percentage
of uncorrectable errors (1-4%) in their infrastructure. However, we
have no easy way of mapping uncorrectable errors to the decision
of when a memory module is replaced.

RAID controllers
RAID controllers showed a higher failure rate than memory mod-
ules. For overall RAID controllers the failure rate was 0.7% AFR
and for newer RAID controllers (< 3 months) the number was close
to 0.3%. Thus, similar to aggregate results shown earlier, RAID
controller is a frequently failing component in servers. This is the
first paper to identify RAID controller as a significant contributor
to DC hardware failure.

We draw the following conclusions from these results. First,
hard disks are the number one failing component with an AFR for
2.7%. This percentage remains constant even for relatively younger
disks when viewed at an yearly granularity. The next major un-
reliabile component is RAID controller. However, the aggregate
category of failures, i.e., one that cannot be attributed to any sin-
gle kind of component is dominant after hard disks. Note that all
these observations are empirical. In the next section we attempt to
understand some of the reasons behind it.

3.4 Classification Trees
We attempt other techniques to explore more structures in the

failure pattern. Figure 7 shows the results of a classification tree
experiment on the entire population of several thousand Microsoft
IT servers 6. The goal of our statistical experiment was to explore if

6We did not observe any dominant predictor/factors when perform-
ing the analysis with the aggregate set of machines
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Figure 7: Classification tree for failures in MSIT servers.

failures (any type of failure indicated by a trouble ticket) could be
predicted using metrics collected from the environment, operation
and design of the servers in the datacenters. For this purpose we use
several metrics some of which are: environment (datacenter name,
manufacturer, location time zone etc.), design (number of disks,
memory capacity, slots, Free virtual memory, Free physical mem-
ory etc.) and operation metrics (last OS install date, OS version,
last updated time etc.). Amongst all these metrics (> 50) we build
a decision tree using CHAID (CHi-squared Automatic Interaction
Detector) methodology [10] for adding factors to the tree (based on
adjusted significance testing) in order to terminate the tree only as
far as the elements added to the tree are statistically significant.

We obtain two factors namely: Datacenter name and manufac-
turer name. The datacenter name is an interesting result as in re-
cent times as there has been research on studying the environment
of various datacenters, the actual datacenter in which the failure is
located could have an important role to play in the reliability of the
system. The manufacturer is also an interesting result as different
hardware vendors have different inherent reliability values associ-
ated with them (the names are intentionally anonymized). These
results to the best of our knowledge are the first in the field to ana-
lyze, observe and predict failures using a wide variety of measures
primarily with the goal of understanding the most dominating fac-
tors in terms of understanding failures from a statistical sense. We
do not imply its use to build prediction models to replace hardware
servers of a particular kind or move all datacenters to one particular
location. It is purely to understand the dominating factors influenc-
ing (or not influencing) failures.

The age of the server, the configuration of the server, the location
of the server within a rack 7,workload run on the machine, none of
these were found to be a significant indicator of failures.

7owing to temperature/humidity gradient within rack we might
have expected different failure characteristics

4. FAILURE PATTERNS
We have so far seen various trends in hardware failures and tried

to establish some patterns. In this section we examine a number
of different predictors for failures. While the experiments so far
were helpful in understanding high-level trends in failures it did
not yield any model or insights that we can use to understand the
root cause behind failures. Furthermore, the results presented thus
far, while educative and informative, are not in a format that can
be easily abstracted to carry out further studies by assuming failure
distributions etc. In this section we perform, what we believe, is the
first such predictive analysis on hardware faults in such a large scale
infrastructure. While we leave a more detailed predictive reliability
modeling effort for future work our aim in this section is to find key
indicators of failures as well as fit the failure characteristics to well-
known distributions to observe patterns.

4.1 Repaired Servers
We examine the behavior of machines once a hardware failure

happens. The hypothesis is that machines that have seen at least
1 hardware incident in the past may have a different behavior and
fate than the machines that do not see any hardware failure, thereby
allowing us to observe an underlying structure. Identifying such
properties will greatly affect our choice of actions upon seeing
hardware faults, for instance, whether or not to repair them etc.

In order to understand the repair probability of machines we use
the following metric, repairs per machine (RPM). We arrive at this
by dividing the total number of repairs by the total number of ma-
chines. We group machines based on the number of hard disks
they contain. We then look for strong indicators of failure rate in
the number of server, the average age as well as number of hard
disks. We plot the RPM as a function of the number of disks in
a server in Figure 8. The X-axis shows the number of disks per
server in each group of servers. The left X-axis shows the RPM
values for each group of machines. For instance, when we look at
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Figure 8: Repairs per machine as a function of number of disks. This includes all machines, not just those that were repaired.

all machines with 9 disks each, the average number of repairs per
machine is 1.5 (diamonds off left Y-axis). Also, the average age
of 9-disk machines (squares off left Y-axis) is just under 2 years.
Finally, the total number of machines in the cluster (normalized to
1 by dividing by the total number of machines across all clusters)
is shown with circles corresponding to the Y-axis on the right. A
quick glance at the graph indicates that neither number of disks per
machine, nor the age of the server is a good indicator of the number
of repair events per machine. This is consistent with the decision
tree experiment described in the previous section (Section 3.4).

We next divide the set of machine into two groups. Those that
see at least 1 hardware incident and those who do not. We then
discard the machines that do not see any hardware incident. Of the
machines that see at least 1 hardware incident we again compute the
RPM. Note, that by definition, each group of machines will have an
RPM of at least 1 (we are only including machines that see at least
1 hardware incident). The results are shown in Figure 9. Compare
this to the RPM values when all machines were put into one group
in Figure 8. There is a clear emergence of some structure and pat-
tern. First observation is that there is no trend between the age of
the servers and how many repairs it sees. However, if we look at
RPM values then they are clustered into two groups. Consider all
clusters of machines, except for 13 and 25 disk machines. All of
these can be fit into a straight line as shown in the figure, with a
good fit (R2 > 0.9). Thus, we can predict, for this group, the num-
ber of repairs per machine with high confidence, by just knowing
the number of disks in the machine, and more importantly, irre-
spective of the age of the machine.

We next investigate why the other two points (corresponding to
13 and 25 disk machines) do not follow the same curve.

• SAS vs. SATA. One possibility is that the disks on the right
are SAS and the other are SATA. Ideally, such information
would be recorded along with the inventory data in the dataset,
making our task easier. Unfortunately, this information is
not tracked in our database. Thus, we resort to the follow-
ing alternate mechanism to guess the technology of the hard

disk. Basically we can tell SAS vs. SATA by the disk ca-
pacities. A SAS disk is more expensive than a SATA disk.
As a result, it is used where performance and not storage is
important. Thus, we would expect the average disk capacity
of SAS disks to be lower than that of SATA disks. Having
resolved this, we return to our original hypothesis of the 13
and 25 disks being SAS and the others being SATA. If this
is true then we should be able to observe the corresponding
difference in the disk capacities. However, as can been seen
in Figure 10 there is no clear demarcation in the average disk
capacities for the 13 and 25 disk machines (shown via tri-
angles off the right Y-axis, normalized to 1). This rules out
SAS vs. SATA as a possible explanation for the cause.

• Improved technology. From Figure 9 we can see that the 13
and 25 disk machines have an average age (shown by squares
off the right Y-axis) lower than those of other clusters (< 2
years). It is possible that being newer disks, they have gone
through a technology change resulting in higher reliability.
It is also possible that in the initial period of deployment the
failure rate is different than when the machine gets old [17].
If we had data beyond the 14 month period we could have
observed the fate of these machines to verify this hypothesis.
There might be other factors beyond our understanding i.e.,
datacenter, disk controller, vibrations and close packing that
might result in different reliability characteristics. In ongoing
work we are investigating possible causes for this.

In summary, we make the following two observations. Firstly, there
is some structure present in the failure characteristics of servers
that have already seen some failure event in the past. There is no
such obvious pattern in the aggregate set of machines. Second, the
number of repairs on a machine shows a very strong correlation to
the number of disks the machine has. This might be intuitive given
that hard-disk is the number one failing component, however, two
facts make this observation interesting and worthy of further inves-
tigation. First, no such obvious relationship exists in the aggregate
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Figure 9: Repairs per machine as a function of number of disks. This is only for machines that saw at least 1 repair event.

Figure 10: Repairs per machine as a function of number of disks. This is only for machines that saw at least 1 repair event. It also
includes the average disk capacity of the server.

set of machines. It was only observed in machines that had already
seen a failure in the past. Second, the fit is remarkably good with
an R2 of greater that 0.9.

4.2 Successive Failures
The previous section established that machines that have seen a

failure in the past have some inherent structure about future fail-
ures. In this section we explore that relationship further. We begin
by analysing how often do repairs happen on the same machine.
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Figure 11: Distribution of days between successive failures fits
the inverse curve very well.

Recall from Section 2.2 that after normalizing the server count (to
100) we found that out of 100 servers, around 9 servers see a fail-
ure in 14 months. In terms of total number of failures there were 20
failiures. We also know that around 5 machines failed only once.
Thus, around 4 machines had more than 1 failure in the 14 month
period. Let us examine these 4 machines and the 11 failures they
see in repeat failures, more closely next. We calculate the time to
next failure (not shown here) and observe that 2 of those repeat
failures happen within the same day. At the other extreme, in some
cases the repeat event can happen after over an year. Put another
way, 20% of all repeat failures happen within a day of the first fail-
ure, and 50% of all repeat failures happen within 2 weeks of the
first failure.

In Figure 11 we plot the days between successive failures and
the number of times the second repair happened in the specified
days between failures. The Y-axis has been omitted to maintain
data privacy. However, as can ben seen qualitatively, higher Y-
values towards the left of the graph suggests that a lot of successive
failure events happen within a short span of the previous hardware
failure on the same server. Using this large sample of failure data
we analyze if there exists a statistical relationship between the days
between successive failures and the number of times the second
repair happened. From an exploratory standpoint we fit a set of ten
standard statistical models. The goodness of fit (R2) of these ten
statistical models is shown in Table 1.

The Inverse model has the best R2 value (represented in Fig-
ure 11 by a solid line). The general form of the inverse equation is
represented by

D = C1+
C2
N

where D is the days between successive failures, C1 and C2 are
constants, and N is the number times of second repair. The Inverse
equation has a general property of diminishing returns, i.e. inverse
equations observe the flat tail of the curve. The R2 of the model
indicates the efficacy of the fit of the model to describe the days be-
tween failures. To the best of our knowledge our paper is the first to
systematically and statistically study the relationship between suc-
cessive failures and the number of times the second repair occurs
within the time period. An important point we would like to make
is that the above results due to the inverse equation fit are indicative
of the existing dataset and not about future predictions. While this
would be a great starting point to model failures we feel it would be
unwise to use these models to predict the days between failures as
we do not yet understand in detail the reasons for such a strong re-
lationship. We have quantified the final result (i.e. failures) which

Table 1: R2 values for various statistical curves fit against days
between successive failures on the same machine.

Model Fit R2

Linear 0.178
Logarithmic 0.474

Inverse 0.974
Quadratic 0.292

Cubic 0.389
Compund 0.822

Power 0.771
S 0.309

Growth 0.822
Exponential 0.822

might be due to the interaction of various factors beyond our con-
trol. This result serves as further motivation for research in this
field.

5. RELATED WORK
In this paper we analyzed the hardware reliability for a large

cloud computing infrastructure. To the best of our knowledge, this
is the first, research paper describing and analyzing server faults
at such a large scale. There have been a number of recent efforts
to understand the reliability of subsets of computing infrastructures
and we acknowledge them below. Most of them however, have
been around understanding the failure characteristics of individual
components and not whole server reliability.

Google recently published [18] the largest study on memory mod-
ules. They found that 8% of all modules have correctable errors and
the number of correctable errors per DIMM could be close to 4000
per year. They found no correlation of errors to manufacturer. They
also found that temperature has a very small effect on error rates,
which tend to be dominated by hard errors. The number of uncor-
rectable errors was 1.3% per year for few machines and upto 4%
for others. Unfortunately, our current dataset contains no informa-
tion on correctable or uncorrectable errors, although we do track
when the module was replaced. This is typically after a fair num-
ber of errors have already been seen by the server diagnostics. In
practice, we observe a DIMM replacement value of 0.1% which is
significantly smaller than the number of uncorrectable errors noted
by Google in their infrastructure. This leads to an interesting dis-
cussion of what denotes a fault and when should repairs ideally take
place, but that is outside the scope of the current paper.

In a keynote talk [5] at the 3rd ACM SIGOPS International Work-
shop on Large Scale Distributed Systems and Middleware (LADIS),
Jefferey Dean presented numbers and experiences from running the
Google infrastructure. He observed that disk AFR is in the range
1-5% and server crash is in the range 2 to 4%. Disk AFR is in
the same range as what we observe, i.e. 2.7%. We do not have
access to server crashes for the machines used in this study, how-
ever, the reader may note that we observe a server failure rate of
8%. He also mentioned other single points of failure in the data-
center infrastructure including PDUs, switches etc. In this paper
we only try to understand failure characteristics of servers. Build-
ing a whole datacenter reliability model consisting of all of these
components is part of an ongoing effort. Google has also released
a book [4] explaining how to build a datacenter. They classified all
faults and found that software related errors are around 35% fol-
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lowed by configuration faults around 30%. Human and networking
related errors are 11% each and hardware errors are less than 10%.

Schroeder et. al analyze [17] disk replacement logs from large
production systems and report on the failure rate and compare that
to vendor advertised values. They find huge differences form the
advertised 0.88% AFR. They see upwards of 1%, 2-4% at times
and upto 13% in instances. Our reported values are in the same
range as quoted in their paper. We observe higher failure rate in
servers that host a large number of disks (not shown here). They
observe early onset of wear out in failure rates. They also did not
see any huge difference in failure of SCSI, SATA, and FC drives.
This result again, is similar in vein to the results we saw in Fig-
ure 10. They also observed that the time between replacement
shows significant correlation, including autocorrelation and LRD
(long-range-dependence). In our study we find that the failure rate
of disks in the first year is very close to the failure rate for the ag-
gregate set of machines where significant machines could be upto
3 years old. For successive repairs we observe that empirical data
fits the inverse curve very well.

Another study on disk reliability was performed by Pinheiro et.
al [15]. They find that disk reliability ranges from 1.7% to 8.6%.
They find that temperature and utilization have low correlation to
failures. However, SMART counters correlate well, for instance,
scrub errors. In our current study we do not correlate SMART
counters, however, we too found that environmental conditions were
not a great indicator of faults. Instead, we found that datacenter lo-
cation and manufacturer were the dominant indicators.

Weihand et. al look at support logs from around 40,000 commer-
cially deployed storage systems that have around 1.8 million disks
to determine the root cause behind storage system failures [11].
Their conclusion is that disk failure rate is not indicative of storage
subsystem failure rate. Our current work focuses on component
failure rate as well as server failure rate. In the future we are look-
ing at incorporating this analysis into our framework. They also
found that as disk capacity increases, there is no real evidence of
higher failure rates. This is consistent with the results present in
Figure 10. They found many bursty errors suggesting that RAID
like solutions might have seen the end-of-the day and better models
that do not assume independence are warranted. In ongoing work
we are working on correlating RAID failures and hard disk failures
co-incident on the same server to build sound models to point us in
this direction.

Bairavasundram et. al [2] analyze latent errors (undetected er-
rors) lurking inside disks that manifest upon accessing the corre-
sponding sector. In this work we do not examine fine grained data
to compare such results. Instead we rely on the detailed diagnostics
to determine when it is appropriate for a hardware component to be
repaired. When such a decision makes its way to a filed IT ticket,
we use that to carry out our analysis.

We would like to reiterate that the aim of our current study was
to discover underlying patterns in failure characteritics. Explaining
the root cause behind that is part of ongoing effort. Discovering
the structure, if any, in failure patterns will be an invaluable tool
to help understand the nature of these events and also to assist as a
modeling tool to test various datacenter designs [19, 7, 12, 1].

6. CONCLUSIONS
Demand for always available cloud computing infrastructure puts

onus on the underlying software which in turn runs on commodity
hardware owing to economic concerns. This make the cloud com-
puting infrstructure vulnerable to hardware failures and the corre-
sponding service outages. This paper is the first, to the best of our
knowledge, to characterize server repair/failure rates in order to un-

derstand the hardware reliability for large cloud computing infras-
tructures. We find that (similar to others) hard disks are the number
one replaced components, not just because it is the most dominant
component but also because it is one of the least reliable. We find
that 8% of all servers can expect to see at least 1 hardware incident
in a given year and that this number is higher for machines with lots
of hard disks. We can approximate the IT cost due to hardware re-
pair for a mega datacenter (> 100,000 servers) to be over a million
dollars.

Furthermore, upon seeing a failure, the chances of seeing another
failure on the same server is high. We find that the distribution of
successive failure on a machine fits an inverse curve. Our initial
hypothesis is that upon seeing a failure the machine makes a transi-
tion from a benign state to a new state where there is a rich structure
in failure patterns. We also find that, location of the datacenter and
the manufacturer are the strongest indicators of failures, as opposed
to age, configuration etc.

Being a data study there a number of limitations in this analy-
sis. For instance, we can only report based on the time period we
observe. This implies that the results are potentially biased against
the environmental conditions, technology, workload characteristics
etc. prevelant during that period. Also, we do not investigate the
cause of the fault or even the timing. We are only interested in re-
pair events at a coarse scale and understanding what models it fits.
In a fast moving technology industry we also face the perpetual
danger of analysing historical logs only to find our results obsolete
before we can put them to use.

In ongoing work we are looking at doing root cause analysis to
explain as well as proactively predict failures. We are also working
on composable models for server reliability which will help us un-
derstand the effects, for instance, if HDDs are replaced by SSDs.
Finally, we are planning to incorporate whole datacenter designs,
including single points of failures, for instance, PDUs, and switches
into a reliability model. We hope that the results presented in this
paper provides fuel to understanding and mining the behavior and
causes of hardware faults in cloud computing infrastructures.
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