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Abstract
Improvements in medical imaging techniques have provided
clinicians the ability to obtain detailed brain images of pa-
tients at lower costs. This increased availability of rich data
opens up new avenues of research that promise better under-
standing of common brain ailments such as Alzheimer’s Dis-
ease and dementia. Improved data mining techniques, how-
ever, are required to leverage these new data sets to identify
intermediate disease states (e.g., mild cognitive impairment)
and perform early diagnosis.

We propose a graphical model framework based on
conditional random fields (CRFs) to mine MRI brain images.
As a proof-of-concept, we apply CRFs to the problem
of brain tissue segmentation. Experimental results show
robust and accurate performance on tissue segmentation
comparable to other state-of-the-art segmentation methods.
In addition, results show that our algorithm generalizes well
across data sets and is less susceptible to outliers. Our
method relies on minimal prior knowledge unlike atlas-based
techniques, which assume images map to a normal template.
Our results show that CRFs are a promising model for tissue
segmentation, as well as other MRI data mining problems
such as anatomical segmentation and disease diagnosis where
atlas assumptions are unreliable in abnormal brain images.

Keywords: Graphical models; image segmentation;
brain images

1 Introduction

Magnetic resonance imaging (MRI) is a neuroimaging
method that can be used for visualization of brain
anatomy with a high degree of spatial resolution and
contrast between brain tissue types. Structural MRI
methods have been used to identify regional volumet-
ric changes in brain areas known to be associated with
diseases such as Alzheimer’s (AD), demonstrating the
utility of such methods for studying diseases [26, 29]. In
the context of Alzheimer’s, structural MRI has identi-
fied associated cross-sectional differences and longitudi-
nal changes in volume and size of specific brain regions,
such as the hippocampus and entorhinal cortex, as well
as regional alterations in gray matter, white matter and
cerebrospinal fluid on a voxel-by-voxel basis [29].

We focus on mining and extracting useful informa-
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tion from these structural MRI images. Many image
techniques such as thresholding, region growing, sta-
tistical models, active-control methods and clustering
have been previously used for medical imaging; for an
in-depth review of MRI mining methods, please refer
to Balafar et al. [4]. As pointed out in Balafar et al.,
thresholding methods by themselves are not ideal since
distribution of intensities in medical images is quite
complex. Probabilistic classification methods [7, 25] ap-
pear to be best suited for this complex task due to their
ability to handle noise and ease of implementation.

At the other end of the spectrum are atlas-based
segmentation methods that parcellate the MRI data
into different anatomically relevant regions. For ex-
ample, the Automated Anatomic Label (AAL) atlas1as
implemented by WFU PickAtlas [20], divides the MRI
image into 116 clinically important regions. Ideally, ef-
fective MRI-based diagnosis and identification relies on
a segmentation approach to be (1) robust to noise, (2)
able to handle large variances in brain intensities and
(3) subject- and disease-specific.

While atlas-based brain warping works well for nor-
mal brains, it fails to capture the morphological changes
that could result from brain diseases such as tumors,
Alzheimer’s, etc., [1, 2]. This is because atlas-based
segmentation is not subject- or disease-specific; quite
the contrary, all brains are segmented into the same set
of regions, and assume normal characteristics for each
region (i.e., that there is a one-to-one mapping to a tem-
plate). This results in a decrease in shape variability i.e.,
it manifests in an inability to capture local shape and
feature information, which is essential for discriminating
between brains for diagnosis of diseases.

This issue is addressed in our work: our motiva-
tion is to find a discriminative machine-learning-based
approach to segment brain images and detect abnor-
malities that could aid in classification of diseases from
images. Recent work [22] on predicting the incidence
of AD using EM-based segmentation combined with an
ensemble method demonstrates that such an approach
produces superior diagnostic performance when applied
to structural MRI data. We further motivate our ap-
proach with another example that previews the work

1http://prefrontal.org/blog/2008/05/brain-art-aal-patchwork



Figure 1: Illustration of tissue segmentation task using one 2D slice from a sample 3D MRI. From left to right:
Raw Image – the intensity values obtained from MR (i.e., the algorithm input); Ground truth – a manually
segmented image classifying each voxel as white matter (white), grey matter (light grey), or cerebral spinal fluid
(dark grey); CRF – the proposed algorithm in this paper; SPM8+, VBM8 – atlas-based baseline techniques
representing current state-of-the-art methods in medical imaging.

presented here, and highlights the need for moving away
from atlas-based methods. Consider Figure 1, which
shows the results of using our probabilistic discrimi-
native method against the standard method based on
a Gaussian-mixture model (SPM)2 [3, 9] and voxel-
based morphometry (VBM) [2] for identifying impor-
tant features (regions) when predicting Alzheimer’s dis-
ease. First, it is evident that our approach more closely
resembles the ground truth, and thus is more effective
in isolating the gray matter and cerebrospinal fluid in-
tensities from the brain images compared to SPM and
VBM. Second, in the raw image in Figure 1, there is
a brain deformity in upper-right region. Mapping to a
template atlas, however, assumes that each voxel in this
deformed region maps to a voxel in a normal brain, even
though it is more likely that this tissue is simply missing.
Thus, SPM rounds out the image and erroneously fills it
in with cerebrospinal fluid intensities while VBM tran-
sitions incorrectly from white matter to background.

While several diverse paradigms exist for image seg-
mentation, we focus on probabilistic models, as they
have been used successfully in many image segmenta-
tions tasks. For example, Friedman and Russell [11]
utilized probabilistic models to detect objects in mo-
tion in video images. In particular, Markov Random
Fields (MRFs) [12], a type of probabilistic graphical ap-
proach, have been applied to a wide variety of tasks in-
cluding texture analysis and image restoration (a more
thorough sampling of applications of MRFs for image

2In this paper, we use SPM8+ to refer to the New Segment

SPM8 algorithm, which is in beta but shows superior performance
to to Segment SPM8 [9]

analysis can be found in Li [18]). MRFs have also been
successfully applied to brain MRI segmentation [14, 30]
and tissue classification [28]. MRFs, however, are a gen-
erative probabilistic model. That is, when our goal is
to discriminate the tissue type of each voxel in a brain
image, MRFs generate all the configurations of possi-
ble images as well as underlying tissue types, which can
become extraordinarily inefficient.

Building off this success, recent years have seen the
emergence of Conditional Random Fields (CRFs) [16,
27], which are a discriminative variant of MRFs; they
have added the ability to model complex local depen-
dencies in image-mining tasks, including labeling im-
age regions on multiple scales [13] and object recogni-
tion [24]. In particular, Lee et al., [17] applied CRFs
to a set of alignment-based features to perform brain-
tumor segmentation for radiation-therapy target plan-
ning. CRFs have shown superior performance across
many tasks as they directly optimize the classification
task at hand (e.g., the possible configurations of tis-
sue types given a fixed set of image intensities); for in-
stance, the work of Kumar and Hebert [15] shows that
CRFs outperform MRFs at modeling spatial dependen-
cies across a diverse set of natural images. Inspired by
these successes, we were motivated to develop a novel
CRF-based segmentation approach for MRIs.

The key contributions of the paper are as follows:
we (1) propose the first of its kind, fully-CRF-based
framework for structural-MRI-image analysis (in partic-
ular for identification of relevant regions), and apply this
to the task of volumetric segmentation for 3-dimensional
data; (2) demonstrate the impact of the state-of-the-art
algorithms for solving CRFs on MRI image analysis; (3)



apply our approach to standard brain image repository
data sets; and, (4) show that our approach generalizes
across data sets, an important feature for developing
efficient disease- and subject-specific approaches.

This paper is organized as follows: after reviewing
the general CRF probabilistic model, we will present our
methodology in the following section. Next, we present
the results of comparing our method to 3 other standard
methods for white matter(WM) tissue classification and
grey matter(GM) tissue classification. We conclude by
discussing possible future work directions.

2 Background

Probabilistic graphical models encompass a set of ex-
pressive techniques for modeling the structural depen-
dencies between random variables using a graph. In this
paper, we examine a specific graphical model known as
Conditional Random Fields (CRFs) [16] (for a thorough
overview of CRFs, see Sutton and McCallum [27]).

CRFs model a probability distribution over two
sets of random variables x and y. Here, x represents
the observed data, that is, the set of random variables
representing evidence. For example, in a standard part-
of-speech (POS) task, x can represent the words in a
sentence. The variables, y, represent the underlying
phenomena to analyze; this is known as the set of latent,
or hidden, random variables in the posed problem.
In the sample POS task, yi ∈ y encompasses the
underlying part-of-speech tag for word i in the sequence.
The data mining task is to find an assignment (or
label) ŷi for each random variable yi that maximizes the
conditional probability of y given the observed data, x:

(2.1) ŷ = arg max
y

P (y|x).

We define a graph G = (V,E) where each variable
indexed in y (i.e., yi ∈ y) corresponds to one vertex
i ∈ V . Each edge e ∈ E represents a pairwise
connection between two hidden variables and encodes
a dependence between the two variables. In our figures,
we also add the observed variables x to the graph, and
add corresponding edges connecting the evidence to the
latent variables. CRFs assume the following Markov
property on the graph, which is a key assumption of
CRFs: each hidden variable yi ∈ y, given evidence x
and the value of it’s neighbors N(yi), is conditionally
independent of all other hidden variables:

(2.2) P (yi |x, y/yi) = P (yi |x,N(yi)).

Notice that the model is globally conditioned on all
the evidence. This is in contrast to MRFs which add
constraints requiring the evidence variable xi being
conditionally independent given the label yi.

Figure 2: An example of conditional random field using a
factor graph representation. The set of white nodes (e.g., yi)
represents hidden variables that we wish to infer. The black
nodes (e.g., xi) represent sets of evidence variables. Each
edge contains an edge potential (shown as white squares)
that represent the encoded dependence between variables.
Note that while CRFs do not require an imposed structure
on the evidence data, our representation utilizes a local
neighborhood of data for each hidden variable.

Figure 2 shows a sample CRF graph model using
a factor graph representation. While the CRF can be
conditioned on all evidence data, x, we simplify to
only consider a local neighborhood of evidence (e.g.,
the 3 words surrounding position i in POS tagging).
Thus, each hidden variable yi has a corresponding
set of evidence variables xi. Using the factor graph
representation, we break our model into two sets of
binary feature functions: f(yi,xi) (i.e., the connection
between the label of a hidden variable and its evidence
data) and f(yi, yj , xi) where e ≡ (i, j) ∈ E (i.e., the
connection between the label at yi and yj). To simplify
notation, we will generalize the first set of features (i.e.,
add yj as a parameter that is ignored). This leads to
the following formulation of a CRF, whose probability
distribution of the latent variables can be conditioned
on the evidence as

(2.3) p(y |x) =
1

Z(x)
exp

 ∑
(i,j)∈E,k

λkfk(yi, yj ,xi)

 ,

and Z(x) is a normalization factor,

(2.4) Z(x) =
∑
y

exp

 ∑
(i,j)∈E,k

λkfk(yi, yj ,xi)

 .

The variable k indexes each feature function in our set
and λk is the weight learned for each feature fk.

3 CRFs for MRI Image analysis

In this section, we outline our proposed method for
identifying relevant regions from MRI images. Figure 3



Figure 3: Pipeline of the proposed algorithm. The input
is a CRF with a pre-defined structure, whose parameters
are learned given training data. This model is then used
for isolating tissues in a new MRI image.

Figure 4: Structure of the CRF used in this work.
Each voxel’s tissue type from the 3D image becomes
a hidden node in the CRF. Each hidden node has 26
neighbors and 3 observations associated with it. MRI
images are the observed variables in the model. The
yellow box indicates that the shown CRF corresponds
to representing the 3 × 3 area of the 2D image slice.

presents the pipeline of the approach. The input to
the algorithm is a CRF whose structure is predefined
and a set of training examples in the form of MRI
images and their corresponding tissue segmentations.
Tissue segmentation here refers to classifying each tissue
(voxel) as one of gray matter (GM), white matter
(WM) and cerebral spinal fluid (CSF). Each MRI high
(1.5mm) resolution image has about 3 million voxels.
The CRF that is constructed would correspondingly
have about 3 million hidden nodes (variables) each
corresponding to a voxel in the MRI image.

Figure 4 provides more details about how the CRF

model corresponds to the input MRI. In our CRF model,
each voxel has a corresponding hidden node yi and can
take one of three values, yi = {WM, GM, CSF} representing
white matter, grey matter and cerebrospinal fluid. We
chose to model each voxel as being connected to 26
neighboring voxels (i.e., a 3 × 3 × 3 neighborhood
around the voxel) with the result that each hidden node
is connected to 26 other hidden nodes. Observations
include the image intensity of each voxel, which is a
function of the density of the underlying tissue type.
We also included the mean intensities of the neighboring
voxels and the Euclidean distance of the voxel to the
center of the image as additional features. Associated
with each voxel (and hidden variable) Yi is a set of
observations xi that include its own intensity value, the
average intensities of the 26 neighbors and the position
of the voxel.

Note that estimating the conditional distribution
corresponds to estimating λ for the feature set. Also
note that the structure CRF for each image could be
different due to different brain sizes, but they all share
the same set of parameters due to the features being
the same for each node in the CRF. Put another way,
this means that while the CRF graph-model can be of
different sizes due to differences in the brain sizes, the
set of parameters to be learned for each of these CRFs is
the same. This is evident in Figure 4, which shows that
each voxel type is the hidden node for the CRF, and
the observed intensities along with the position become
the observations for the CRF. While we show at most
8 neighbors (2D slice) for each node for brevity, recall
that each node has 26 possible neighbors (3D volume).

Our methodology proceeds in two phases: the
training phase and the inference phase. The overview
of our methodology is shown in Figure 5.

3.1 Training Phase As mentioned earlier, while
each CRF can potentially have varying numbers of
nodes, the set of parameters (λ) for all the images is
the same. We employed the UGM package for learning
the parameters of the CRF3; this is because it is one
of the few packages that can learn a CRF with a
large number of parameters, and continuous evidence
variables. The number of parameters learned for each
CRF is 96, which corresponds to 64 edge features,
16 observation (node) features, and 16 boundary edge
features. Thus, a possibly 3 million node CRF can be
efficiently represented using 96 parameters; this is one
of the main advantages of parameter representation via
exponential functions.

We considered three CRF-training approaches:

3http://www.di.ens.fr/ mschmidt/Software/UGM.html



Figure 5: Overview of CRF model training and infer-
ence. SGD and ICM stand for stochastic gradient de-
scent and iterated conditional modes, respectively.

pseudo likelihood [5], L-BFGS [19] and stochastic gra-
dient descent. Because of the size of the graph, the
memory requirement for learning using batch methods
was prohibitively high. In our experiments, we found
that using stochastic gradient descent performed the
best compared to other training methods, and conse-
quently employed learning with stochastic gradient de-
scent. Recall that stochastic gradient descent is an on-
line algorithm that iterates over each example, comput-
ing the gradient with respect to each example. It makes
several passes over the training set before converging
to the optimal parameters. We used a random order-
ing of the training images between each iteration. In
our experiments, the number of iterations required for
convergence was between 200 and 500 iterations. We
employed loopy belief propagation (BP) [21, 23] as the
inference algorithm for estimating the partition function
during training and marginal probabilities during train-
ing. The only user-tunable parameter is the maximum
number of iterations, and this value was set using 5-fold
cross validation.

3.2 Inference Phase Once the parameters of the
CRF are estimated, the next step is to classify the tissue
type at each voxel of the image. This problem is posed
as obtaining the maximum a posteriori (MAP) estimate

over the different voxels i.e.,

(3.5) ŷ = arg max
yi

P (yi = ŷi |xi) ∀i.

In order to perform inference, we use iterated condi-
tional models (ICM) [6], which maximizes local condi-
tional probabilities sequentially. The algorithm exploits
the notion that neighboring voxels typically are of the
same type (GM, WM or CSF) and that each voxel is
corrupted with a given probability. Simply put, the
aim of ICM is to minimize the within-segment variance
by assigning each voxel a specific label, while taking
the neighborhood information into account. Thus, a
set of neighboring voxels with the same label type will
form a “segment” within the image. To avoid reach-
ing local minima, ICM can be used with restarts; we
used 30 restarts in our experiments. We preferred ICM
over loopy belief propagation for MAP inference because
ICM is scalable and fast; additionally, the presence of
restarts allowed avoiding local minimums that would
otherwise occur due to the use of loopy BP.

4 Experimental Setup

Our experiments were designed to answer the following
questions:

Q1: How does the proposed approach compare
against atlas-based (knowledge intensive) MRI-
image analysis methods?

Q2: How does the proposed approach per-
form against state-of-the-art probabilistic methods
(atlas-free) for MRI-image analysis?

Q3: How does the proposed method generalize
across different data sets?

Ideally, we would like to compare methods on an
Alzheimer’s data set (such as the ADNI study4) in the
disease prediction task. To our knowledge, there are no
publicly available data sets with manual annotations for
abnormal brain MRI images.

4.1 Data Sets Data was acquired from the Internet
Brain Segmentation Repository (IBSR)5. IBSR provides
two data sets, IBSR V1.0 and IBSR V2.0. IBSR V1.0

consists of 20 low resolution, normal brains. IBSR V2.0

consists of 18 high resolution 1.5mm T1-weighted scans.
The scans have been spatially normalized through ro-
tation only, and processed by the Center for Morpho-
metric Analysis (CMA) AutoSeg bias field correction
routines. Both data sets include manual tissue segmen-
tations by experts, which was used as ground truth.

4http://www.adni-info.org/
5http://www.nitrc.org/projects/ibsr



4.2 Comparative Algorithms Other MRI analysis
methods we compared against were SPM8 New Segment
(SPM8+), VBM8, and FAST. Statical Parametric Map-
ping 8 (SPM8) is a software suite implemented in Mat-
lab for MRI analysis. It includes two tissue segmenta-
tion methods, Segment and New Segment. New Seg-
ment differs from Segment in that is also classifies non-
brain tissues, and performs a post-registration cleanup
using a Markov random field (MRF). As New Segment
typically outperforms Segment [9], we did not include
results from Segment in this paper. For SPM8+, regis-
tration into MNI space was first performed using SPM8
coRegister. SPM8+ performs a full bias field correc-
tion and tissue segmentation using an atlas-based MAP
method. SPM8+ outputs marginal probability maps for
each tissue class; these were compiled using the maxi-
mum marginal probability given each voxel [3]. SPM8+
was performed using default segmentation parameters,
a light bias field correction, and a cleanup MRF of
strength 1.

Voxel-Based Morphometry 8 (VBM) uses an atlas-
based MAP method combined with partial volume
estimation and denoising. VBM was performed using
default SPM8 batch parameters. Maximum marginal
probabilities for each voxel were used to compile a
final segmentation. FAST is a fully automatic tissue
segmentation framework within the FSL software suite.
FAST version 5.0 was used.

FAST performs segmentation using a hidden
Markov Random field fitted through an expectation
maximization algorithm while simultaneously perform-
ing bias field correction, outputting both tissue proba-
bility maps and a compiled final image [30]. The com-
piled image was used for evaluation.

4.3 Experiments A tissue segmentation of the 18
IBSR V2.0 images was performed to evaluate the ac-
curacy of the proposed model. Full leave-one-out cross
validation, with a five-fold cross-validation tuning set
was used. WM and GM results were compared against
FAST, SPM8+, and VBM8. Classification of CSF was
also performed, but not included (the reasons for this
are explained at the end of this subsection). To demon-
strate generalizability of the proposed method, a sec-
ond test was performed using both IBSR V1.0 and IBSR

V2.0. CRFs were trained only using the lower resolu-
tion IBSR V1.0 images, and then tested on the higher
resolution IBSR V2.0 images.

Segmentation accuracies were evaluated using the
Dice coefficient [8]. The Dice coefficient is related to the
Jaccard similarity index and F1-score in that they are all
monotonic with respect to one another. The Dice index
is a commonly used measure of segmentation accuracy

in neuroimaging [9]. For two samples A and B, the Dice
coefficient is defined as

(4.6)
A ∪B
|A|+ |B|

.

For segmentation analysis this becomes

(4.7)
2(TP )

(TP + FP ) + (TP + FN)

where TP is the true positive rate, FP is the false
positive rate, and FN is the false negative rate. A Dice
coefficient of 1 means that the given segmentation is
exactly the same as the ground truth image, while a
Dice coefficient of 0 means they are completely non-
overlapping.

Finally, we mentioned earlier that the discrimina-
tion experiments for CSF were performed but not re-
ported. This is because the IBSR V2.0 manual seg-
mentations do not include certain types of CSF. This
missing data causes all algorithms to perform at a Dice
index less than 0.4, leading to anomalous results.

5 Results and Discussion

In this section, we present the results of the experiments.
Figure 6 presents the Dice coefficient for the WM and
GM regions respectively. For example, for the WM
Dice coefficient, we averaged over all the voxels where
the “true” label from the manual segmentation is WM.
Higher values would indicate that the WM regions have
been predicted more accurately by the model.

5.1 Comparison to Atlas-Based Methods As
shown in the figure, the proposed approach (denoted as
CRF in the graphs) performs significantly better than
the atlas-based methods (SPM8+ and VBM) for both
WM and GM. Hence, Q1 can be answered affirmatively
– the proposed approach is better than the atlas-based
methods in isolating the WM and GM regions.

5.2 Comparison to Atlas-Free Methods When
compared to the state-of-the-art probabilistic atlas-free
method (FAST), the CRF method is slightly worse in
WM prediction and is slightly better in GM predic-
tion, making its performance comparable to recent ap-
proaches for MRI segmentation. Hence, Q2 can be an-
swered neutrally in that the methods are comparable.
The key advantage of our method is that it can be eas-
ily implemented on any available (scalable) CRF imple-
mentation, and does not require specialized learning and
inference modules or hardware. The FAST method is re-
lated to our method as they both use a hidden compo-
nent for MRFs, but it is well-known that training CRFs
is easier than training MRFs. It would be an interesting



CRF FAST SPM8+ VBM8
0

20

40

60

80

100
D

ic
e 

In
de

x 
%

CRF FAST SPM8+ VBM8
0

20

40

60

80

100

D
ic

e 
In

de
x 

%

Grey Matter White Matter

Figure 6: Dice Coefficients for WM and GM predictions after being training and tested on subsets of the IBSR V2.0 data
set. These are the results of leave-one-out testing using 5-fold cross validation. The results are averaged over 18 runs of
the test set.
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Figure 7: Two example MRI images where our method does very well (A) and poorly (B). In A which contains slight
abnormalities, as mentioned in the introduction, our CRF method performs the best along with FAST when compared to
atlas-based methods. In B, which is an image with areas of low average intensity due to scanning noise, the CRF method
overestimated the gray matter compared to the other methods.

future direction to explore the use of Gaussian mixture
models (along the lines of FAST) for CRFs to gain im-
provements in performance. In addition, EM training
did not do well in our method, compared to the stochas-
tic conjugate gradient descent; in fact, it was an order
of magnitude slower, while FAST employs EM for train-
ing its hidden MRF. Finally, it should be noted that our
method entails very little domain-engineered knowledge
(e.g., bias field correction, expert knowledge constraints,
and the use of priors), which FAST and other methods
do incorporate. One future direction would be to incor-
porate these features into the CRF model, which adds
increased expressivity to the models. Our initial exper-
iments avoid this as we seek to develop a general im-

age analysis framework that can extend beyond tissue
segmentation (e.g., classification of disease; anatomical
segmentation).

To understand the performance of our method
further, we consider two specific images and present
the results in Figure 7. The figure shows two brain
images A and B, and the raw image is presented along
with the ground truth. As can be seen in A, which
has a mildly deformed brain structure, our proposed
method and FAST appear to identify the white and
gray matter regions correctly. However, the atlas-
based methods are very general and are not sensitive
to changes in brain structures; they breakdown in such
methods. For example, VBM8 predicts some WM



Figure 8: Results of comparing CRF based approach when
trained from the same IBSR V2.0 data set (yellow) and
when trained on low-resolution IBSR V1.0 data set and
evaluated on the high resolution data set(blue). The results
are comparable with no statistically significant difference
between the scenarios on both the gray matter and white
matter predictions. The results are averaged over 5 runs.

regions to be adjacent to the background region (which
generally does not happen with most images). When
predicting for B, however, because of B having a much
lower intensity across the image in this slice when
compared to A, our method predicts more GM than
actually present in the image. We believe that this
is due to the fact that our method models GM very
well (as evidenced by the earlier experiment), but when
the average intensity is on the lower side compared to
the rest of MRI, it causes the method to predict more
regions as GM. FAST does not experience this drop in
accuracy as it incorporates corrections of these intensity
inhomogeneities (generally termed bias field correction)
in its framework. Exploring the reason for this mild over
fitting remains an interesting future work direction.

5.3 Comparison Across Data Sets To answer Q3,
we trained the model on low resolution IBSR V1.0

images, and tested them on high resolution IBSR V2.0

images. We compared the results to simply training
and testing on the high resolution IBSR V2.0 images.
The results are presented in Figure 8, where the former
setting is presented in blue and the latter in yellow for
both WM and GM prediction. For both tasks, the CRF
method generalized quite well across the data sets, given
that there is no statistical significance in the difference
in performance between both settings. This allows us
to answer Q3 affirmatively that the CRF method can
generalize across multiple images quite effectively, even
with no co-registration step between images.

5.4 Computational Costs All tests were performed
using a 4-core Intel i5-347OS 2.9 GHz processor and
31 GB of RAM. Each fold took approximately 30 min-
utes to decode new images after training (comparable to
other methods). Training took approximately 40 hours
to complete. It is important to note that when com-
paring run times, methods such as SPM or FAST have
already been fully trained, and thus it is appropriate to
only compare the time it takes the proposed method to
decode new images.

6 Conclusion and Future Work

As far as we are aware, this is the first work on
employing the highly successful framework of CRFs on
per voxel based analysis for MRI images, specifically
for predicting WM and GM regions in MRI analysis
from voxel data. We have demonstrated that we could
employ an CRF learner to learn a small number of
parameters that are shared by different CRFs. The
results were superior to that of atlas-based methods
while being comparable to the state-of-the-art MRF
based method. When compared to the MRF method,
we employ no domain engineered features. We also
demonstrated that the resulting classifier allowed for
generalization across multiple resolution images.

The most logical next step is to begin to apply our
framework to other MRI analysis problem. Anatom-
ical segmentation has posed an especially challenging
problem for atlas-free methods, as evidenced the most
commonly used MRF based anatomical segmentation
method still heavily relies on an atlas [10]. An inter-
esting future direction would be to see if our method
can perform atlas-free anatomical segmentation. An-
other powerful framework for multi-dimensional spatial
image analysis is a special type of CRF called the Dis-
criminative Random Field (DRF) method [15]. The key
advantage of DRFs is that they allow for domain specific
classifiers to model the potential functions. A related
work employs support vector machine based classifier
for capturing the observation potentials [17] to identity
large tumors in MRI images. We on the other hand, con-
sider voxel by voxel data for modeling the brain. It is
an interesting direction to explore more expressive clas-
sifiers inside our potential functions. Another possible
future work is considering and comparing other learn-
ing methods [27] for training the CRFs. Finally, using
the results of the image analysis for direct prediction of
events such as onset of Alzheimer’s is an interesting and
exciting future research possibility. We believe that the
real impact of anatomical segmentation can be realized
by combining their output with powerful classifiers.
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