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Abstract. Current atlas-based methods for MRI analysis assume brain
images map to a “normal” template. This assumption, however, does not
hold when analyzing abnormal brain shapes or disease states. We pro-
pose a discriminative-graphical model framework based on conditional
random fields (CRFs) to mine MRI brain images. As a proof-of-concept,
we apply CRFs to the problem of brain tissue segmentation. Experi-
mental results show robust and accurate performance on tissue segmen-
tation comparable to other state-of-the-art segmentation methods. Our
algorithm generalizes well across data sets and is less susceptible to out-
liers, while relying on minimal prior knowledge relative to atlas-based
techniques. These results provide a promising framework for future ap-
plication on disease classification and atlas-free anatomical segmentation.

1 Introduction

This paper presents a novel framework for extracting useful information from
structural MRI images. Many image techniques such as thresholding, region
growing, and clustering have been previously used for medical imaging. As dis-
cussed in Balafar et al. [4], thresholding methods are not ideal since the distribu-
tion of intensities in medical images is quite complex. Atlas-based segmentation
methods, on the other hand, parcellate the MRI data into different anatomical
regions using a standard brain template. Effective MRI-based diagnosis relies
on a segmentation approach to be (1) robust to noise, (2) able to handle large
variances in brain intensities and (3) subject- and disease-specific.

While atlas-based brain warping works well for normal brains, it fails to
capture the morphological changes that could result from brain diseases such
as tumors, Alzheimer’s, etc. [1, 2]. This is because atlas-based segmentation is
not subject- or disease-specific; all brains are segmented into the same set of
regions and assume normal characteristics. Our work aims to find an atlas-free,
discriminative machine-learning-based approach to segment brain images and
detect abnormalities that could aid in classification of diseases from images.
Recent work [17] on predicting the incidence of AD using atlas-free segmentation
combined with a classifier demonstrates that such an approach can produce
superior diagnostic performance.

While several diverse paradigms exist for image segmentation, we focus on
probabilistic models, as they have been used successfully in many image segmen-
tation tasks and provide a mechanism for handling noise and complex structures
in data[6, 22]. Markov Random Fields (MRFs) [10], for example, have been ap-
plied to a wide variety of tasks including texture analysis and image restoration,
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among others [15] as well as brain MRI segmentation [12, 25] and tissue classifi-
cation [24]. Recent years have seen the emergence of Conditional Random Fields
(CRFs) [14, 23], which are a discriminative variant of MRFs; they have added
the ability to model complex local dependencies in image-mining tasks, includ-
ing labeling image regions [11] and object recognition [19]. The work of Kumar
and Hebert [13] shows that CRFs outperform MRFs at modeling spatial depen-
dencies across a diverse set of natural images. Inspired by these successes, we
were motivated to develop a novel CRF-based segmentation approach for MRIs.
We propose the first of its kind, fully-CRF-based framework for structural-MRI-
image analysis, and apply this to the task of volumetric segmentation for 3-
dimensional data. We apply our approach to standard brain repository data sets
and show that our method achieves superior performance to popular atlas-based
methods and comparable performance to the state-of-the-art methods.

2 CRFs for MRI Image analysis

We now outline our proposed method for identifying relevant regions from MRI
images. A thorough introduction to CRFs is provided by Sutton and McCal-
lum [23]. Here, we seek to model our MRI task using the following model:

p(y |x) =
1

Z(x)
exp

 ∑
(i,j)∈E,k

λkfk(yi, yj ,xi)

 , (1)

where Z(x) is a normalization factor, y is the set of hidden variables (one for
each voxel’s tissue type; i.e., yi = {WM, GM, CSF} for gray matter, white matter and
cerebral spinal fluid), x is the set of observed variables for each voxel (i.e., voxel
intensity, neighborhood average intensity, and distance to center), fk defines the
kth feature function, and λk is the corresponding weight given to that feature.
We chose to model each voxel as being connected to 26 neighboring voxels (i.e.,
yi is connected to each yj in 3 × 3 × 3 neighborhood of hidden variables).

The input to the algorithm is a CRF with defined structure, a set of training
examples in the form of MRI images (observations x) with corresponding tissue
segmentation (ground truth labels y). Each MRI image has about 3 million
voxels yielding a corresponding CRF with 3 million hidden variables.

Estimating the conditional distribution corresponds to estimating λ for the
feature set. While the CRF structure for each image could be different due
to different brain sizes, they all share the same set of parameters due to the
features being the same for each node in the CRF. Our methodology proceeds in
two phases: the training phase and the inference phase and is shown in Figure 2.

Training Phase: As mentioned earlier, while each CRF can potentially have
varying numbers of nodes, the set of parameters (λ) for all the images is the same.
We employed the UGM package [21] for learning the parameters of the CRF, one
of the few packages that can learn a CRF with a large number of parameters, and
continuous evidence variables. The number of parameters learned for each CRF
is 96, which corresponds to 64 edge features, 16 observation features, and 16
boundary edge features. Thus, a possibly 3 million node CRF can be efficiently
represented using 96 parameters.



Fig. 1. Overview of CRF model training
and inference. SGD and ICM stand for
stochastic gradient descent and iterated
conditional modes, respectively.

We considered three primary CRF-
training approaches: pseudo likeli-
hood, L-BFGS and stochastic gradi-
ent descent. Because of the size of
the graph, the memory requirement
for learning using batch methods
was prohibitively high. In our experi-
ments, we found that using stochastic
gradient descent performed the best
compared to other training methods.
Stochastic gradient descent is an on-
line algorithm that iterates over each
example, computing the gradient with
respect to each example. It makes sev-
eral passes over the training set be-
fore converging to the optimal pa-
rameters. We use a random ordering
of the training images with the opti-
mal number of iterations ranging from
200 and 500 iterations. We employed
loopy belief propagation (BP) [16, 18]
as the inference algorithm for estimat-

ing the partition function during training and marginal probabilities The only
user-tunable parameter is the maximum number of iterations, and this value was
set using 5-fold cross validation.

Inference Phase: Once the parameters of the CRF are estimated, the next
step is to classify the tissue type at each voxel of the image. This problem is
posed as obtaining the maximum a posteriori (MAP) estimate over the different
voxels i.e., ŷ = arg maxyi

P (yi = ŷi |xi) ∀i. In order to perform inference,
we use iterated conditional models (ICM) [5], which maximizes local conditional
probabilities sequentially. The algorithm exploits the notion that neighboring
voxels typically are of the same type (GM, WM or CSF) and that each voxel is
corrupted with a given probability. Simply put, the aim of ICM is to minimize
the within-segment variance by assigning each voxel a specific label, while taking
the neighborhood information into account. Thus, a set of neighboring voxels
with the same label type will form a “segment” within the image. To avoid
reaching local minima, ICM can be used with restarts; we used 30 restarts in our
experiments. We preferred ICM over loopy belief propagation for MAP inference
because ICM is scalable and fast; additionally, the presence of restarts allowed
avoiding local minimums that would otherwise occur due to the use of loopy BP.

3 Experimental Setup

We aim to answer the following questions: Q1: How does the proposed ap-
proach compare against the atlas-based (knowledge intensive) MRI image anal-
ysis methods? Q2: How does the CRF method perform against the state-of-



the-art probabilistic method (atlas-free) for MRI analysis? Q3: How does the
proposed method generalize across different data sets? Ideally, we would like to
compare the methods on an Alzheimer’s data set (such as the one from ADNI)
in the disease prediction task, but, as far as we are aware, there are no publicly
available data sets with manual annotations for abnormal brain MRI images.

Dataset: Data was acquired from the Internet Brain Segmentation Reposi-
tory(IBSR) [20]. IBSR provides two data sets, IBSR V1.0 and IBSR V2.0. IBSR
V1.0 consists of 20 low resolution, normal brains. IBSR V2.0 consists of 18 high
resolution 1.5mm T1-weighted scans. The scans have been spatially normalized
through rotation only and processed by the Center for Morphometric Analysis
(CMA) ’autoseg’ biasfield correction routines. Both data sets include manual
tissue segmentation by experts which were used as a ground truth.

Other Algorithms: Results were compared against Voxel-Based Morphom-
etry (VBM8) [2] , SPM8 New Segment (SPM8+) [3, 8], and FAST [25]. SPM8+
was performed using default segmentation parameters, a light bias field correc-
tion, and a cleanup MRF of strength 1. VBM uses an atlas based maximum
posterior probability method combined with partial volume estimation and de-
noising. VBM was performed using default SPM8 batch parameters. FAST is a
tissue segmentation software within the FSL software suite that uses a hidden
Markov random field fitted through an expectation maximization algorithm [25].

Experiments: A tissue segmentation of the 18 IBSR V2.0 images was per-
formed to evaluate the accuracy of our CRF framework. Full leave one out cross
validation with a five fold cross validation tuning set was used for the CRF frame-
work. Results were compared against FAST, SPM8+, and VBM8. To demon-
strate the robustness of the CRF framework, a second test was performed where
the CRF was trained only using the lower resolution IBSR V1.0 images and then
deployed on the higher resolution IBSR V2.0 images. Segmentation accuracies
were evaluated using the Dice coefficient [7]. The Dice coefficient is related to
the Jaccard similarity index and F1-score in that they are all monotonic with
respect to one another. The Dice index measures the degree of spatial overlap
between two sets of voxels, and varies from 0 (no overlap) to 1 (complete over-
lap). The Dice index is a commonly used measure of segmentation accuracy in
neuroimaging [8].

4 Results and Discussion

Figure 2 present the Dice coefficient for the WM regions and GM regions respec-
tively. For example, for the WM Dice coefficient, we averaged over all the voxels
where the “true” label from the manual segmentation is WM. Hence, higher
values would indicate that the WM regions have been predicted more accurately
by the model. As can be seen from the figure, both for WM and GM, the pro-
posed approach (denoted as CRF in the graphs) performs significantly better
than the atlas-based methods (SPM8 and VBM). Hence, Q1 can be answered
affirmatively that the proposed approach is better than the atlas-based methods
in isolating the WM and GM regions.



Fig. 2. Dice Coefficients for WM and GM predictions averaged over the 18 images
in the IBSR V2.0 data set. Our method is presented in blue while other methods are
presented in red. CRF is our proposed model, trained on the IBSR V2.0 data while
CRF mixed is the result of training on the low resolution IBSR V1.0 data.

When compared to the state-of-the-art probabilistic atlas-free method (FAST),
the CRF method is slightly worse in WM prediction and is slightly better in
GM prediction, making its performance comparable to recent approaches for
MRI segmentation. Hence, Q2 can be answered neutrally in that the methods
are comparable. The key advantage of our method is that it can be easily imple-
mented on any available (scalable) CRF implementation, and does not require
specialized learning and inference modules or hardware. The FAST method is
related to our method as they both use a hidden component for MRFs, but it
is well-known that training CRFs is easier than training MRFs. It would be an
interesting future direction to explore the use of Gaussian mixture models (along
the lines of FAST) for CRFs to gain improvements in performance. In addition, it
should be noted that our method entails very little domain-engineered knowledge
(e.g., bias field correction, expert knowledge constraints, and the use of priors),
which FAST and other methods do incorporate. One future direction would be
to incorporate these features into the CRF model, which adds increased expres-
sivity to the models. Our initial experiments avoid this as we seek to develop a
general image analysis framework that can extend beyond tissue segmentation
(e.g., classification of disease; anatomical segmentation).

To understand the performance of our method further, we consider two spe-
cific images and present the results in Figure 3. The figure shows two brain
images A and B, and the raw image is presented along with the ground truth.
As can be seen in A, which has a mildly deformed brain structure, our proposed
method and FAST appear to identify the white and gray matter regions cor-
rectly. However, the atlas-based methods are very general and are not sensitive
to changes in brain structures; they breakdown in such methods. For exam-
ple, VBM8 predicts some WM regions to be adjacent to the background region
(which generally does not happen with most images). When predicting for B,
however, because of B having a much lower intensity across the image in this
slice when compared to A, our method predicts more GM than actually present
in the image. We believe that this is due to the fact that our method models GM
very well (as evidenced by the earlier experiment), but when the average inten-
sity is on the lower side compared to the rest of MRI, it causes the method to
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Fig. 3. Two example MRI images where our method does very well (A) and poorly
(B). In A, which contains slight abnormalities, our CRF method performs the best
along with FAST when compared to atlas-based methods. In B, an image with areas of
low average intensity due to scanning noise, the CRF method overestimated the gray
matter compared to the other methods. The low contrast in B gives an advantage to
methods with integrated domain knowledge.

predict more regions as GM. FAST does not experience this drop in accuracy as
it incorporates corrections of these intensity inhomogeneities (generally termed
bias field correction) in its framework. Exploring the reason for this mild over
fitting remains an interesting future work direction.

To answer Q3, we trained the model on low resolution IBSR V1.0 images,
and tested them on high resolution IBSR V2.0 images. Figure 2 shows the result
as CRF Mixed. Importantly, the results for this experiment are nearly identical
to the normal set up (leave one out training/testing on IBSR V2.0 alone). This
reinforces the notion that a trained CRF method generalizes quite well across the
data sets despite different resolutions. This allows us to answer Q3 affirmatively,
an important result when considering an extension to disease-specific data sets.

5 Conclusion and Future Work

As far as we are aware, this is the first work on employing the highly successful
framework of CRFs on per voxel-based analysis for MRI images, specifically
for predicting WM and GM regions in MRI analysis from voxel data. We have
demonstrated that we could employ an CRF learner to learn a small number
of parameters that are shared by different CRFs. The results were superior to
that of atlas-based methods while being comparable to the state-of-the-art MRF
based method. When compared to the MRF method, we employ no domain
engineered features. We also demonstrated that the resulting classifier allowed
for generalization across multiple resolution images. These results provide an
framework for future directions of work, which aims to identify intermediate
disease states with higher accuracy (e.g., mild cognitive impairment) [17] and
improve upon anatomical segmentation techniques which rely heavily upon brain
atlases [9].
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