
Chapter 1

Machine Learning in Structural
Biology: Interpreting 3D Protein
Images

Frank DiMaio, Ameet Soni and Jude Shavlik
University of Wisconsin – Madison

1.1 Introduction . 1
1.2 Background . 2
1.3 arp/warp . 11
1.4 resolve . 15
1.5 textal . 22
1.6 acmi . 27
1.7 Conclusion . 36

1.1 Introduction

This chapter discusses an important problem that arises in structural bi-
ology: given an electron density map – a three-dimensional “image” of a
protein produced from crystallography – identify the chain of protein atoms
contained within the image. Traditionally, a human performs this interpreta-
tion, perhaps aided by a graphics terminal. However, over the past 15 years,
a number of research groups have used machine learning to automate den-
sity map interpretation. Early methods had much success, saving thousands
of crystallographer-hours, but require extremely high-quality density maps
to work. Newer methods aim to automatically interpret poorer and poorer
quality maps, using state-of-the-art machine learning and computer vision
algorithms.

This chapter begins with a brief introduction to structural biology and x-ray
crystallography. This introduction describes in detail the problem of density
map interpretation, a background on the algorithms used in automatic inter-
pretation, and a high-level overview of automated map interpretation. The
chapter also describes four methods in detail, presenting them in chronolog-
ical order of development. We apply each algorithm to an example density
map, illustrating each algorithm’s intermediate steps and the resultant inter-
pretation. Each algorithm’s section presents pseudocode and program flow
diagrams. The chapter concludes with a discussion of the advantages and

0-8493-0052-5/00/$0.00+$.50
c© 2001 by CRC Press LLC 1

2

shortcomings of each method, as well as future research directions.

1.2 Background

Knowledge of a protein’s folding – that is, the sequence-determined three-
dimensional structure – is valuable to biologists. A protein’s structure pro-
vides great insight into the mechanisms by which a protein acts, and knowing
these mechanisms helps increase our basic understanding of the underlying
biology. Structural knowledge is increasingly important in disease treatment,
and has led to the creation of catalysts with industrial uses. No existing
computer algorithm can accurately map sequence to 3D structure; however,
several experimental “wet lab” techniques exist for determining macromole-
cular structure. The most commonly used method, employed for about 80%
of structures currently known, is x-ray crystallography. This time-consuming
and resource-intensive process uses the diffraction pattern of x-rays off a crys-
tallized matrix of protein molecules to produce an electron density map. This
electron density map is a three-dimensional “picture” of the electron clouds
surrounding each protein atom. Producing a protein structure is then a matter
of identifying the location of each of the protein’s atoms in this 3D picture.

Density map interpretation – traditionally performed by a crystallographer
– is time-consuming and, in noisy or poor-quality maps, often error-prone.
Recently, a number of research groups have looked into automatically inter-
preting electron density maps, using ideas from machine learning and com-
puter vision. These methods have played a significant role in high-throughput
structure determination, allowing novel protein structures to quickly be elu-
cidated.

1.2.1 Protein structure

Proteins (also called polypeptides) are constructed from a set of building
blocks called amino acids. Each of the twenty naturally-occurring amino
acids consists of an amino group and a carboxylic acid group on one end,
and a variable chain on the other. When forming a protein, adjacent amino
groups and carboxylic acid groups condense to form a repeating backbone
(or mainchain), while the variable regions become dangling sidechains. The
atom at the interface between the sidechain and the backbone is known as the
alpha carbon, or Cα for short (see Figure 1.1). The linear list of amino acids
composing a protein is often referred to as the protein’s primary structure
(see Figure 1.2a).

A protein’s secondary structure (see Figure 1.2b) refers to commonly oc-
curring three-dimensional structural motifs taken by continuous segments in

Machine Learning in Structural Biology 3

H N

H

C

H

C

O

CH2

OH

N

H

C

H

C

O

CH

H3C

N

H

C

H

C

O

CH2

SH CH3

OH

Amino end
(N-terminus)

Carboxyl end
(C-terminus)

Peptide
bond

Sidechains

Backbone

Alpha
carbon

Amino acid residue

FIGURE 1.1: Proteins are constructed by joining chains of amino acids in
peptide bonds. A chain of three amino acid residues is illustrated.

(a)

(b)

(c)
MET−SER−SER−SER−SER−SER−VAL−PRO−ALA−TYR−LEU−GLY−ALA−
LEU−GLY−TYR−MET−ALA−MET−VAL−PHE−ALA−CYS−...

MET−SER−SER−SER−SER−SER−VAL−PRO−ALA−TYR−LEU−GLY−ALA−

LEU−GLY−TYR−MET−ALA−MET−VAL−PHE−ALA−CYS−...

FIGURE 1.2: An illustration of: (a) a protein’s primary structure, the linear
amino-acid sequence of the protein, (b) a protein’s secondary structure, which
describes local structural motifs such as alpha helices and beta sheets, and
(c) a protein’s tertiary structure, the global three-dimensional conformation
of the protein.

the protein. There are two such motifs: α-helices, in which the peptide chain
folds in a corkscrew, and β-strands, where the chain stretches out linearly. In
most proteins, several β-strands run parallel or antiparallel to one another.
These regular structural motifs are connected by less-regular structures, called
loops (or turns). A protein’s secondary structure can be predicted somewhat
accurately from its amino-acid sequence [1].

Finally, a protein’s three-dimensional conformation – also called its ter-
tiary structure (see Figure 1.2c) – is uniquely determined from its amino
acid sequence (with some exceptions). No existing computer algorithm can
accurately map sequence to tertiary structure; instead, we must rely on ex-
perimental techniques, primarily x-ray crystallography, to determine tertiary
structure.

4

Data
collection

Phasing
experiments

X-ray
diffraction

FFT

Interpretation

NREFlections= 13624
ANOMalous= FALSe
DECLare NAME=IOBS DOMAin=RECIprocal TYPE=REAL END
DECLare NAME=SIGI DOMAin=RECIprocal TYPE=REAL END
DECLare NAME=FOBS DOMAin=RECIprocal TYPE=REAL END
DECLare NAME=SIGMA DOMAin=RECIprocal TYPE=REAL END
INDEx= 0 0 2 IOBS= 877.50 SIGI= 44.00
 FOBS= 29.62 SIGMA= 0.75
INDEx= 0 0 3 IOBS= 20114.70 SIGI= 994.60
 FOBS= 141.83 SIGMA= 3.55
INDEx= 0 0 4 IOBS= 17701.90 SIGI= 794.10
 FOBS= 133.05 SIGMA= 3.02
INDEx= 0 0 5 IOBS= 380.90 SIGI= 24.70
 FOBS= 19.52 SIGMA= 0.64
INDEx= 0 0 6 IOBS= 6762.20 SIGI= 266.70
 FOBS= 82.23 SIGMA= 1.64
INDEx= 0 0 7 IOBS= 2333.80 SIGI= 108.40
 FOBS= 48.31 SIGMA= 1.14

 0 0 2 29.62 0.00 0.00
 0 0 3 141.83 0.00 0.00
 0 0 4 133.05 0.00 0.00
 0 0 5 19.52 0.00 0.00
 0 0 6 82.23 0.00 0.00
 0 0 7 48.31 0.00 0.00
 0 0 8 73.36 0.00 0.00
 0 0 9 108.23 0.00 0.00
 0 0 10 160.50 0.00 0.00
 0 0 11 4.77 0.00 0.00

Protein
Crystal

Collection Plate

List of Phases

List of Reflections

Density Map

Protein Structure

FIGURE 1.3: An overview of the crystallographic process.

1.2.2 X-ray crystallography

An overview of protein crystallography appears in Figure 1.3. Given a
suitable target for structure determination, a crystallographer must produce
and purify this protein in significant quantities. Then, for this particular
protein, one must find a very specific setting of conditions (i.e., pH, solvent
type, solvent concentration) under which protein crystals will form. Once a
satisfactory crystal forms, it is placed in front of an x-ray source. Here, this
crystal diffracts a beam of x-rays, producing a pattern of spots on a collector.
These spots – also known as reflections or structure factors – represent the
Fourier-transformed electron density map. Unfortunately, the experiment can
only measure the intensities of these (complex-valued) structure factors; the
phases are lost.

Determining these missing phases is known as the phase problem in crys-
tallography, and can be solved to a reasonable approximation using compu-
tational or experimental techniques [2]. Only after estimating the phases can
one compute the electron-density map (which we will refer to as a “density
map” or simply “map” for short).

The electron density map is defined on a 3D lattice of points covering the
unit cell, the basic repeating unit in the protein crystal. The crystal’s unit
cell may contain multiple copies of the protein related by crystallographic
symmetry, one of the 65 regular ways a protein can pack into the unit cell.
Rotation/translation operators relate one region in the unit cell (the asym-
metric unit) to all other symmetric copies. Furthermore, the protein may form
a multimeric complex (e.g. a dimer, tetramer, etc.) within the asymmetric
unit. In all these cases is up to the crystallographer to isolate and interpret a
single copy of the protein.

Figure 1.4 shows a sample fragment from an electron density map, and
the corresponding interpretation of that fragment. The amino-acid (primary)
sequence of the protein is typically known by the crystallographer before in-
terpreting the map. In a high-quality map, every single (non-hydrogen) atom
in the protein can be placed in the map (Figure 1.4b). In a poor-quality map

Machine Learning in Structural Biology 5

(a) (c)(b)

FIGURE 1.4: An overview of electron density map interpretation. Given
the amino-acid sequence of the protein and a density map (a), the crystallogra-
pher’s goal is to find the positions of all the protein’s atoms (b). Alternatively,
a backbone trace (c), represents each residue by its Cα location.

 1Å 2Å 3Å 4Å 5Å

FIGURE 1.5: Electron density map quality at various resolutions. The
“sticks” show the position of the atoms generating the map.

it may only be possible to determine the general locations of each residue.
This is known as a Cα trace (Figure 1.4c). This information - though not as
comprehensive as an all-atom model - is still valuable to biologists.

The quality of experimental maps as well as the sheer number of atoms
in a protein makes interpretation difficult. Certain protein crystals produce
a very narrow diffraction pattern, resulting in a poor-quality, “smoothed”
density map. This is quantified as the resolution of a density map, a numeric
value which refers to the minimum distance at which two peaks in the density
map can be resolved. Figure 1.5 shows a simple density map at a variety of
resolutions.

Experimentally determined phases are often very inaccurate, and make in-
terpretation difficult as well. As the model is built, these phases are iteratively
improved [3], producing a better quality map, which may require resolving
large portions of the map. Figure 1.6 illustrates the effect poor phasing has
on density-map quality. In addition, noise in diffraction-pattern data collec-
tion also introduces errors into the resulting density map.

Finally, the density map produced from x-ray crystallography is not an

6

least noise most noise

FIGURE 1.6: Electron density map quality as noise is added to the com-
puted phases. The “sticks” show the position of the atoms generating the
map.

“image” of a single molecule, but rather an average over an ensemble of all
the molecules contained within a single crystal. Flexible regions in the protein
are not visible at all, as they are averaged out.

For most proteins, this interpretation is done by an experienced crystal-
lographer, who can, with high-quality data, fit about 100 residues per day.
However, for poor-quality structures or structures with poor phasing, interpre-
tation can be an order of magnitude slower. Consequently, map interpretation
is the second-most time-consuming step in the crystallographic process (after
crystal preparation).

A key question for computational methods for interpreting density maps is
the following: how are candidate 3D models scored? Crystallographers typ-
ically use a model’s R-factor (for residual index) to evaluate the quality of
an interpretation. Formally, the R-factor is defined, given experimentally de-
termined structure factors Fobs and model-determined structure factors Fobs,
as:

R =
∑
||Fobs| − |Fcalc||∑

|Fobs|
(1.1)

The R-factor measures how well the proposed 3D structure explains the
observed electron-density data. Crystallographers usually strive to get R-
factors under 0.2 (or lower, depending on map resolution), while also building
a physically-feasible (i.e. valid bond distances, torsion angles, etc.) protein
model without adding too many water molecules. One can always reduce the
R-factor by placing extra water molecules in the density map; these reductions
are a result overfitting the model to the data, and don’t correspond to a
physically feasible interpretation.

Another commonly used measure is free R-factor, or Rfree. Here, 5-10%
of reflections are randomly held out as a test set before refinement. Rfree

is the R-factor for these held-aside reflections. Using Rfree tends to avoid
overfitting the protein’s atoms to the reflection data.

Machine Learning in Structural Biology 7

1.2.3 Algorithmic background

Algorithms for automatically interpreting electron density maps draw heav-
ily from the machine learning and statistics communities. These communities
have developed powerful frameworks for modeling uncertainty, reasoning from
prior examples, and statistically modeling data, all of which have been used
by researchers in crystallography. This section briefly describes the statistal
and machine learning methods used by the interpretation methods presented
in this paper. This section is intended as a basic introduction to these topics.
Interested readers should consult Russell and Norvig’s text [4] or Mitchell’s
text [5] for a thorough overview.

1.2.3.1 Probabilistic models

A model here refers to a system that simulates a real-world event or process.
Probabilistic models simulate uncertainty by producing different outcomes
with different probabilities. In such models, the probabilities associated with
certain events is generally not known, and instead has to be estimated from
a training set, a set of previously solved problem instances. Using maximum
likelihood estimation, the probability of a particular outcome is estimated as
the frequency at which that outcome occurs in the training set.

The unconditional or prior probability of some outcome A is denoted P (A).
Assigning some value to this probability, say P (A) = 0.3, means that in
the absence of any other information, the best assignment of probability of
outcome A is 0.3. As an example, when flipping a (fair) coin, P (“heads”) =
0.5. In this section, we use “outcome” to mean the setting of some random
variable; P (X = xi) is the probability that variable X takes value xi. We will
use the shorthand P (xi) to refer to this same value.

The conditional or posterior probability is used when other, previously un-
known, information becomes available. If other information, B, relevant to
event A is known, then the best assignment of probability to event A is given
by the conditional P (A|B). This reads “the probability of A, given B.”
If more evidence, C, is uncovered, then the best probability assignment is
P (A|B,C) (where “,” denotes “and”).

The joint probability of two or more events is the probability of both events
occurring, and – for two events A and B – is denoted P (A,B) and is read
“the probability of A and B”. Conditional and joint probabilities are related
using the expression:

P (A,B) = P (A|B)P (B) = P (B|A)P (A) (1.2)

This relation holds for any events A and B. Two events are independent
if their joint probability is the same as the product of their unconditional
probabilities, P (A,B) = P (A)P (B). If A and B are independent we also
have P (A|B) = P (A), that is, knowing B tells us nothing about A.

One computes the marginal probability by taking the joint probability and
summing out one or more variables. That is, given the joint distribution

8

P (A,B,C), one computes the marginal distribution of A as:

P (A) =
∑
B

∑
C

P (A,B,C) (1.3)

Above, the sums are over all possible outcomes of events B and C. The mar-
ginal distribution is important because it provides information about the dis-
tribution of some variables (A above) in the full joint distribution, without
requiring one to explicitly compute the (possibly intractable) full joint distri-
bution.

Finally, Bayes’ rule allows one to reverse the direction of a conditional:

P (A|B) =
P (B|A)P (A)

P (B)
(1.4)

Bayes’ rule is useful for computing a conditional P (A|B) when direct esti-
mation (using frequencies from a training set) is difficult, but when P (B|A)
can be estimated accurately. Often, one drops the denominator, and instead
computes the relative likelihood of two outcomes, for example, P (A = a1|B)
versus P (A = a2|B). If a1 and a2 are the only possible outcomes for A, then
exact probabilities can be determined by normalization; there is no need to
compute the prior P (B).

1.2.3.2 Case-based reasoning

Broadly defined, case-based reasoning (CBR) attempts to solve a new prob-
lem by using solutions to similar past problems. Algorithms for case-based
reasoning require a database of previously solved problem instances, and
some distance function to calculate how “different” two problem instances
are. There are two key aspects of CBR systems. First, learning in such sys-
tems is lazy : the models only generalize to unseen instances when presented
with such a new instance. Second, they only use instances “close” to the
unseen instance when categorizing it.

The most common CBR algorithm is k-nearest neighbor (kNN). In kNN,
problem instances are feature vectors, that is, points in some n-dimensional
space. The learning algorithm, when queried with a new problem instance
X = 〈xi, . . . , xn〉 for classification or regression, finds the k previously solved
problem instances closest to the query in Euclidean space. That is, one chooses
the examples minimizing the distance:

d(X||Y) =

√√√√ n∑
i=1

(xi − yi)2 (1.5)

Then, the k neighbors “vote” on the query instance’s label: usually the ma-
jority class label (for classification) or average label (for regression) of the k
neighbors is used. One variant of kNN weights each neighbor’s vote by its
similarity to the query. Another variant learns weights for each dimension, to
be used when computing the distance between two instances.

Machine Learning in Structural Biology 9

Σ Σ

FIGURE 1.7: A multilayer, feed-forward neural network. The network
consists of an input layer fully connected to a hidden layer of sigmoid units,
fully connected to an output layer.

1.2.3.3 Neural networks

An artificial neural network (ANN) is a nonlinear function estimator used
to approximate real or discrete target functions. Inspired by neurons in the
brain, ANNs consist of a number of units connected in a network. Each unit
is connected with multiple inputs and a single output. A given unit’s output
is some function of the weighted sum of the inputs. This function is know as
the unit’s activation function. For a perceptron – a simple, one-layer network
– this function is usually a step function.

More commonly, the network structure has multiple, feed-forward layers,
as shown in Figure 1.7. This network consists of a hidden layer which fully
connects the input and outputs. Learning the weights in the network requires
a differentiable activation function; often one uses a sigmoidal function:

σ(y) =
1

1 + e−y
(1.6)

Above, y is the weighted sum of inputs, y =
∑N

i=0 wixi.
The backpropagation algorithm learns the weights for a multilayer network,

given a network structure. Backpropagation uses gradient descent over the
network weight space to minimize the squared error between computed output
values and desired output values over some training set. The goal of back-
propagation is to find some point in weight space – that is, some setting of all
the weights in the network – that (locally) minimizes this squared error.

1.2.4 Approaches to automatic density map interpretation

A number of research groups have investigated automating the interpre-
tation of electron-density maps. This section presents a high-level overview
of some of these methods, while the remainder of this chapter takes an in-
depth look at four of these methods, describing algorithmically how they have
approached this problem.

By far the most commonly used method is arp/warp [6, 7, 8]. This atom-
based method heuristically places atoms in the map, connects them, and

10

refines their positions. To handle poor phasing, arp/warp uses an iterative
algorithm, consisting of alternating phases in which (a) a model is built from
a density map, and (b) the density map’s phases are improved using the
constructed model. This algorithm is widely used, but has one drawback:
fairly high resolution data, about 2.3Å or better, is needed. Given this high-
resolution data, the method is extremely accurate; however, many protein
crystals fail to diffract to this extent.

Several approaches represent the density map in an alternate form, in the
process making the map more easily interpretable for both manual and au-
tomated approaches. One of the earliest such methods, skeletonization, was
proposed for use in protein crystallography by Greer’s bones algorithm [9].
Skeletonization, similar to the medial-axis transformation in computer vision,
gradually thins the density map until it is a narrow ribbon approximately
tracing the protein’s backbone and sidechains. More recent work by Leherte
et al. [10], represents the density map as an acyclic graph: a minimum span-
ning tree connecting all the critical points (points where the gradient of the
density is 0) in the electron density map. This representation accurately ap-
proximates the backbone with 3Å or better data, and separates protein from
solvent up to 5Å resolution.

Cowtan’s fffear efficiently locates rigid templates in the density map [11].
It uses fast Fourier transforms (FFTs) to quickly match a learned template
over all locations in a density map. Cowtan provides evidence showing it lo-
cates alpha helices in poorly-phased 8Å maps. Unfortunately, the technique
is limited in that in can only locate large rigid templates (e.g. those corre-
sponding to secondary-structure elements). One must trace loops and map
the fit to the sequence manually. However, a number of methods use fffear
as a template-matching subroutine in a larger interpretation algorithm.

X-autofit, part of the quanta [12] package, uses a gradient refinement
algorithm to place and refine the protein’s backbone. Their refinement takes
into account the density map as well as bond geometry constraints. They
report successful application of the method at resolutions ranging from 0.8 to
3.0Å.

Terwilliger’s resolve contains an automated model-building routine [13,
14] uses a hierarchical procedure in which helices and strands are located and
fitted, then are extended in an iterative fashion, using a library of tripeptides.
Finally, resolve applies a greedy fragment-merging routine to overlapping
extended fragments. The approach was able to place approximately 50% of
the protein chain in a 3.5Å resolution density map.

Levitt’s maid [15] approaches map interpretation “as a human would,” by
first finding the major secondary structures, alpha helices and beta sheets,
connecting the secondary-structure elements, and mapping this fit to the pro-
vided sequence. Maid reports success on density maps at around 2.8Å reso-
lution.

Ioerger’s textal [16, 17, 18] attempts to interpret poor-resolution (2.2 to
3.0Å) density maps using ideas from pattern recognition. Ioerger constructs

Machine Learning in Structural Biology 11

FIGURE 1.8: A 3.5Å resolution electron density map – containing two
copies of a 95-amino-acid protein – and its crystallographer-determined so-
lution. This map, at various resolutions, will be used as a running example
throughout the section.

a set of 15 rotation-invariant density features. Using these features at several
radii, a subroutine, capra, trains a neural network to identify Cα atoms.
Textal then identifies sidechains by looking at the electron density around
each putative alpha carbon, efficiently finding the most similar region in a
database, and laying down the corresponding sidechain.

Finally, acmi takes a probabilistic approach to density map interpretation
[19]. Residues of the protein are modeled as nodes in a graph, while edges
model pairwise structural interactions arising from chemistry. An efficient
inference algorithm determines the most probable backbone trace conditioned
on these interactions. Acmi finds accurate backbone traces in well-phased 3.0
to 4.0Å density maps.

The rest of this chapter further describes four of these methods – arp/warp,
resolve, textal, and acmi – in detail. Each section presents a method, de-
scribing strengths and weaknesses. High-level pseudocode clarifies important
subroutines. Throughout the chapter, a small running example is employed to
illustrate intermediate steps of the various algorithms. The example uses the
density map of protein 1xmt, a 95-amino-acid protein with two symmetric
copies in the unit cell.

The running example is not meant as a test of the algorithms (although a
comparison appears in [19]), but rather as a real-world illustrative example.
The example map is natively at 1.15Å resolution. Full native resolution is used
for arp/warp; the map is downsampled to 2.5Å resolution for resolve, and
3.5Å resolution for textal and acmi. Maps are downsampled by smoothly
diminishing the intensities of higher-resolution reflections. The resolution
values chosen are – for this particular map – the worst-quality maps for which
the respective algorithms produce an accurate trace. The 3.5Å density map
and its crystallographer-determined solution appears in Figure 1.8.

12

electron density map

Place free atoms into map

Join chains of free atoms (autotrace)

Refine model using connectivity constraints

Trace sidechains

free atoms model

hybrid model

complete backbone model

hybrid
model

complete all-atom model

FIGURE 1.9: A flowchart of warpntrace.

1.3 arp/warp

The arp/warp (automated refinement procedure) software suite is a crys-
tallographic tool for the interpretation and refinement of electron density
maps. Arp/warp’s warpntrace procedure was the first automatic inter-
pretation tool successfully used for protein models. Today, it remains one of
the most used tools in the crystallographic community for 3D protein-image
interpretation. Arp/warp concentrates on the best placement of individual
atoms in the map: no attempt is made to identify higher-order constructs like
residues, helices, or strands. Arp/warp’s “atom-level” method requires high-
quality data, however. In general, arp/warp requires maps at a resolution
of 2.3A or higher to produce an accurate trace.

Figure 1.9 illustrates an overview of warpntrace. Warpntrace begins
by creating a free atom model – a model containing only unconnected atoms
– to fill in the density map of the protein. It then connects some of these
atoms using a heuristic, creating a hybrid model. This hybrid model con-
sists of a partially-connected backbone, together with a set of unconstrained
atoms. This hybrid model is refined, producing a map with improved phase
estimates. The process iterates using this improved map. At each iteration,
warpntrace removes every connection, restarting with a free-atom model.

1.3.1 Free-atom placement

Arp/warp contains a atom placement method based on arp, an interpre-
tation method for general molecular models. Arp randomly places uncon-
nected atoms into the density map, producing a free atom model, illustrated
in Figure 1.10a. To initialize the model, arp begins with a small set of atoms
in the density map. It slowly expands this model by looking for areas above
a density threshold, at a bonding distance away from existing atoms. The

Machine Learning in Structural Biology 13

(c)

(a)

(b)

FIGURE 1.10: Intermediate steps in arp/warp’s structure determination:
(a) the free atom model, where waters are placed in the map, (b) the hybrid
model, after some connections are determined, and (c) the final determined
structure.

density threshold is slowly lowered until arp places the desired number of
free atoms.

For small molecules, arp’s next step is refining the free-atom model; that is,
iteratively moving atoms to better explain the density map. Free-atom refine-
ment ignores stereochemical information, and moves each atom independently
to produce a complete structure. Arp’s free-atom refinement, in addition to
moving atoms, considers adding or removing atoms from the model. Multiple
randomized initial structures are used to improve robustness. Further details
are available from Perrakis et al. [7].

However, with molecules as large as proteins, free-atom refinement alone is
insufficient to produce an accurate model. Performing free-atom refinement
with tens of thousands of atoms leads to overfitting, producing a model that is
not physically feasible. For determining protein structures, arp/warp makes
use of connectivity information in its refinement, using free-atom placement as
a starting point. The procedure warpntrace adds connectivity information
to the free atom model.

14

ALGORITHM 1.1: Warpntrace’s model-building algorithm
Given: electron density map M, free-atom model F, sequence seq
Find: all-atom model

for i = 1 to nIterations do
H← F // initialize hybrid model
CA pairs← highest-scoring atom pairs 3.8± 0.5Å apart
foreach ci ∈ CA pairs do

if (ci does not match backbone template) then
delete ci from CA pairs

end
end

while a Cα chain of length ≥ 5 remains in CA pairs do
bestChain← longest fragment in DB overlapping CA pairs
remove bestChain’s atoms from CA pairs, H
add bestChain to H

end
H′ ← refine(H)
F← remove connections from hybrid model H′

end
model← sidechainTrace(H′)

1.3.2 Main-chain tracing

Given a free-atom model of a protein, one can form a crude backbone trace
by looking for pairs of free atoms the proper distance apart. Warpntrace
formalizes this procedure, called autotracing, using a heuristic method. The
method is outlined in Algorithm 1.1. Warpntrace assigns a score – based
on density values – to each free atom. The highest scoring atom pairs 3.8 ±
0.5Å apart become candidate Cα’s. The algorithm verifies candidate pairs by
overlaying them with a peptide template. If the template matches the map,
warpntrace saves the candidate pair.

After computing a list of Cα pairs, warpntrace constructs the backbone
using a database of known backbone conformations (taken from solved protein
structures). Given a chain of candidate Cα pairs, warpntrace considers all
backbone conformations in the database with matching Cα positions, ordered
by length. The longest candidate backbone is then added to the model. The
algorithm connects the corresponding free atoms, and removes these atoms
from the free-atom pool. The process repeats as long as there remain candi-
date Cα chains at least 5 residues in length.

Autotracing produces a hybrid model, shown in Figure 1.10b. A hybrid
model contains a set of connected chains together with a set of free atoms.
Autotracing identifies some atom types and connectivity, which enables the
use of some stereochemical information in refinement. Added restraints in-
crease the number of observations available, and increase the probability of

Machine Learning in Structural Biology 15

producing a good model. The tracing is initially very conservative, with many
free atoms remaining in the model. Adding too many restraints too early leads
to overfitting the model.

Finally, a modified version of arp refines this hybrid model. Arp uses the
refined structure to improve the experimentally determined phases, making
the map clearer to interpret. At each iteration of this “autotrace–refine–
recompute phases” cycle, warpntrace returns to a free-atom model, by re-
moving previous traces. Since the map is better-phased, autotracing produces
a more complete model. This, in turn, provides a better refinement, improving
the phases further.

This cycle continues for a fixed number of iterations, or until a complete
trace is available. Finally, warpntrace adds on side-chains by identifying
patterns of free atoms around Cα’s. It aligns these free-atom patterns to the
sequence to produce a complete model. Figure 1.10c illustrates the complete
arp/warp-determined trace on the running example.

1.3.3 Discussion

Arp/warp is the preferred method for automatically interpreting elec-
tron density maps, assuming sufficiently high-resolution data is available. Its
placement of individual atoms, followed by atom-level refinement, produces
an extremely accurate trace with no user action required in 2.3Å or better
density maps. It is widely used by crystallographers to rapidly construct a
protein model. Unfortunately, many protein crystals fail to produce maps of
sufficient quality, and one must consider alternate methods.

1.4 resolve

While arp/warp is extremely accurate with high-resolution data, many
protein crystals fail to diffract to a sufficient level for accurate interpreta-
tion. In general, arp/warp requires individual atoms to be visible in the
density map, which happens at about 2.3Å resolution or better. The next
three methods – resolve, textal, and acmi – all aim to solve maps with
> 2.3Å resolution. All three methods take different approaches to the prob-
lem; however, all three – in contrast to arp/warp – consider higher-level
constructs than atoms when building a protein model. This allows accurate
interpretation even when individual atoms are not visible.

Resolve is a method developed by Terwilliger for automated model-building
in poor-quality (around 3Å) electron density maps [13, 14]. Figure 1.11 out-
lines the complete hierarchical approach. Resolve’s method hinges upon the
construction of two model secondary structure fragments – a short α-helix and

16

electron density map

Identify helix/strand template matches

Extend matches iteratively

Assemble chain from fragments

Trace sidechains

helix/strand list

protein fragment list

backbone model

partial
model

complete all-atom model

FIGURE 1.11: A flowchart of Resolve.

FIGURE 1.12: The averaged helix (left) and strand (right) fragment used
in resolve’s initial matching step.

β-strand – for the initial matching. Resolve first searches over all of rotation
and translation space for these fragments; after placing a small set of over-
lapping model fragments into the map, the algorithm considers a much larger
template set as potential extensions. Resolve joins overlapping fragments
and, finally, identifies sidechains corresponding to each Cα – conditioned on
the input sequence – and places individual atoms into the model.

1.4.1 Secondary structure search

Given an electron density map, resolve begins its interpretation by search-
ing all translations and rotations in the map for a model 6-residue α-helix and
a model 4-residue β-strand. Resolve constructs these fragments by aligning
a collection of helices (or strands) from solved structures; it computes the
electron density for each at 3Å resolution, and averages the density across
all examples. The “average” models used by resolve are illustrated in Fig-
ure 1.12.

Given these model fragments, resolve considers placing them at each po-
sition in the map. At each position it considers all possible rotations (at
a 30◦ or 40◦ discretization) of the fragment, and computes a standardized
squared-density difference between the fragment’s electron density and the

Machine Learning in Structural Biology 17

(a)

(b)

(c)

FIGURE 1.13: Intermediate steps in resolve’s structure determination:
(a) locations in the map that match short helical/strand fragments (b) the
same fragments after refinement and extension, and (c) the final determined
structure.

map:

t(~x) =
∑

~y

εf (~y)
(
ρ′f (~y)− 1

σf (~x)
[
ρ(~y − ~x)− ρ̄(~x)

])
(1.7)

Above, ρ(~x) is the map in which we are searching, ρ′f (~x) is the standardized
fragment electron density, εf (~x) is a masking function that is nonzero only
for points near the fragment, and ρ̄(~x) and σf (~x) standardize the map in the
masked region εf centered at ~x:

ρ̄(~x) =

∑
~y εf (~y)ρ(~y − ~x)∑

~y εf (~y)

σ2
f (~x) =

∑
~y εf (~y)

[
ρ(~y − ~x)− ρ̄(~x)

]2∑
~y εf (~y)

(1.8)

Resolve computes the matching function t(~x) quickly over the entire unit
cell using fffear’s FFT-based convolution [11].

After matching the two model fragments using a coarse rotational step-size,
the method generates a list of best-matching translations and orientations of

18

each fragment (shown in Figure 1.13a). Processing these matches in order,
Resolve refines each fragment’s position and rotation to maximize the real-
space correlation coefficient (RSCC) between template and map:

RSCC(ρf , ρ) =
〈ρf · ρ〉 − 〈ρf 〉〈ρ〉√

〈ρ2
f 〉 − 〈ρf 〉2

√
〈ρ2〉 − 〈ρ〉2

(1.9)

Here, 〈ρ〉 indicates the map mean over a fragment mask. Resolve only
considers refined matches with an RSCC above some threshold.

1.4.2 Iterative fragment extension

At this point, resolve has a set of putative helix and strand locations
in the density map. The next phase of the algorithm extends these using a
much larger library of fragments, producing a model like that in Figure 1.13b.
Specifically, resolve makes use of four such libraries for fragment extension:

(a) 17 α-helices between 6 and 24 amino acids in length

(b) 17 β-strands between 4 and 9 amino acids in length

(c) 9,232 tripeptides containing backbone atoms only for N-terminus exten-
sion

(d) 4,869 tripeptides containing a partial backbone (the chain Cα − C −O
with no terminal N) plus two full residues for C-terminus extension

Resolve learns these fragment libraries from a set of previously solved protein
structures. It constructs the two tripeptide libraries by clustering a larger
dataset of tripeptides.

1.4.2.1 α-helix/β-strand extension

For each potential model’s placement in the map, resolve consider ex-
tending it using each fragment in either set (a), if the model fragment is a
helix, or set (b), if the model fragment is a strand. For each fragment, re-
solve chooses the longest segment of the fragment such that every atom in
the fragment has a density value above some threshold.

To facilitate comparison between these 17 segments of varying length (one
for each fragment in the library), each matching segment is given a score
Q = 〈ρ〉

√
N , with 〈ρ〉 the mean atom density, and N the number of atoms.

The algorithm computes a Z-score:

Z =
Q− 〈Q〉
σ(Q)

(1.10)

Resolve only considers segments with Z > 0.5. Notice there may be a large
number of overlapping segments in the model at this point.

Machine Learning in Structural Biology 19

1.4.2.2 Loop extension using tripeptide libraries

For each segment in the model, resolve attempts to extend the segment
in both the N-terminal and C-terminal direction using the tripeptide library.
Resolve tests each tripeptide in the library by superimposing the first residue
of the tripeptide on the last residue of the current model segment. It then
tests the top scoring “first-level” fragments for overlap (steric clashes) with the
current model segment. For those with no overlap, a lookahead step considers
this first-level extension as a starting point for a second extension. The score
for each first-level extension is:

scorefirst-level = 〈ρfirst-level〉+ max
second-level

〈ρsecond-level〉 (1.11)

Above, 〈ρfirst-level〉 denotes the average map density at the atoms of the first-
level extension.

Resolve accepts the best first-level extension – taking the lookahead term
into account – only if the average density is above some threshold density
value. If the density is too low, and the algorithm rejects the best fragment,
several “backup procedures” consider additional first-level fragments, or step-
ping back one step in the model segment. If these backup procedures fail,
resolve rejects further extensions.

1.4.3 Chain assembly

Given this set of candidate model segments, resolve’s next step is assem-
bling a continuous chain. To do so, it uses an iterative method, illustrated in
Algorithm 1.2. The outermost loop repeats until no more candidate segments
remain. At each iteration, the algorithm chooses the top-scoring candidate
segment not overlapping any others. It considers all other segments in the
model as extensions: if at least two Cα’s between the candidate and extension
overlap, then resolve accepts the extension. Finally, the extension becomes
the current candidate chain.

1.4.4 Sidechain trace

Resolve’s final step is, given a set of Cα positions in some density map, to
identify the corresponding residue type, and to trace all the sidechain atoms
[14]. This sidechain tracing is the first time that resolve makes use of the
analyzed protein’s sequence. Resolve’s sidechain tracing uses a probabilistic
method, finding the most likely layout conditioned on the input sequence.
Resolve’s sidechain tracing procedure is outlined in Algorithm 1.3.

Resolve’s sidechain tracing relies on a rotamer library. This library con-
sists of a set of low-energy conformations – or rotamers – that characterizes
each amino-acid type. Resolve builds a rotamer library from the sidechains
in 574 protein structures. Clustering produces 503 different low-energy side-

20

ALGORITHM 1.2: Resolve’s chain-assembly algorithm
Given: electron density map M, set of high scoring fragments F
Find: putative backbone trace X = {~xi} including Cβ positions

repeat
fragbest ← top scoring unused segment
for each fragi ∈ {F\fragbest} do

if fragi and fragbest overlap at ≥ 2 Cα positions
and extension does not cause steric clashes then

extend fragbest by fragi

end
end

until no candidates remain

chain conformations. For each cluster member, the algorithm computes a
density map; each cluster’s representative map is the average of its members.

For each Cα, resolve computes a probability distribution of the corre-
sponding residue type. Probability computation begins by first finding the
correlation coefficient (see Equation 1.9) between the map and each rotamer.
For each rotamer j, the correlation coefficient at the kth Cα is given by ccjk.
A Z-score is computed, based on rotamer j’s correlation at every other Cα:

Zrot
jk =

ccjk − 〈ccj〉
σj

(1.12)

The algorithm only keeps a single best-matching rotamer of each residue type.
That is, for residue type i:

Zres
ik = max

fragment j is of type i
Zrot

jk (1.13)

Resolve uses a Bayesian approach to compute probability from the Z-
score. Amino-acid distributions in the input sequence provide the a priori
probability P0j of residue type j. Given a set of correlation coefficients at
some position, resolve computes the probability that the residue type is i
by taking the product of probabilities that all other correlation coefficients
were generated by chance. It estimates this probability using the Z-score:

P (ccik) ∝ exp(−(Zresik)2/2) (1.14)

Substituting and simplifying, the probability of residue type i at position k
is:

Pik ← Pi0 ·
exp

(
(Zres

ik)2/2
)∑

l Pl0 · exp
(
(Zres

lk)2/2
) (1.15)

Finally, given these probabilities, resolve finds the alignment of sequence
to structure that maximizes the product of probabilities. The final step is,

Machine Learning in Structural Biology 21

ALGORITHM 1.3: Resolve’s sidechain-placement algorithm
Given: map M, backbone trace X = {~xi} (including Cβ ’s),

sidechain library F, sequence seq
Find: all-atom protein model

for each sidechain fj ∈ F do
for each Cα ~xk ∈ X do

ccjk ← RSCC(M(~xk), fj)) // see Equation 1.9
Zjk ← (ccjk − 〈ccj〉)/σj

end
end

// Estimate probabilities Pik that residue type i is at position k
for each residue type i do

Pi0 ← a priori distribution of residue type i
Zik ← max

fragment j of type i
Zjk

for each alpha carbon ~xk ∈ X do
Pik ← Pi0 · exp(Z2

ik/2)
P

l Pl0·exp(Z2
lk/2)

end
end

// Align trace to sequence, place individual atoms
align seq to chains maximizing product of Pik’s
if (good alignment exists) then

place best-fit sidechain of alignment-determined type at each position
end

given an alignment-determined residue type at each position, placing the ro-
tamer of the correct type with the highest correlation coefficient Z-score. Re-
solve’s final computed structure on the running example, both backbone and
sidechain, is illustrated in Figure 1.13c.

1.4.5 Discussion

Unlike arp/warp, resolve uses higher-order constructs than individual
atoms in tracing a protein’s chain. Searching for helices and strands in the
map lets resolve produce accurate traces in poor-quality maps, in which
individual atoms are not visible. This method is also widely used by crystal-
lographers. Resolve has been successfully used to provide a full or partial
interpretation at maps with as poor as 3.5Å resolution. Because the method
is based on heuristics, when map quality gets worse, the heuristics fail and the
interpretation is poor. Typically, the tripeptide extension is the first heuris-
tic to fail, resulting in resolve traces consisting of disconnected secondary
structure elements. In poor maps, as well, resolve is often unable to iden-

22

tify sidechain types. However, resolve is able to successfully use background
knowledge from structural biology in order to improve interpretation in poor-
quality maps.

1.5 textal

Textal – another method for density map interpretation – was developed
by Ioerger et al. Much like resolve, textal seeks to expand the limit of
interpretable density maps to those with medium to low resolution (2 to 3Å).
The heart of textal lies in its use of computer vision and machine learning
techniques to match patterns of density in an unsolved map against a data-
base of known residue patterns. Matching two regions of density, however, is
a costly six-dimensional problem. To deal with this, textal uses of a set of
rotationally invariant numerical features to describe regions of density. The
electron density around each point in the map is converted to a vector of 19
features sampled at several radii that remain constant under rotations of the
sphere. The vector consists of descriptors of density, moments of inertia, sta-
tistical variation, and geometry. Using rotationally invariant features allows
for efficiency in determination – reducing the problem from 6D to 3D – and
better generalization of patterns of residues.

Textal’s algorithm – outlined in Figure 1.14 – attempts to replicate the
process by which crystallographers identify protein structures. The first step
is to identify the backbone – the location of each Cα – of the protein. Tracing
the backbone is done by capra (C-Alpha Pattern Recognition Algorithm),
which uses a neural network to estimate each subregion’s distance to the
closest Cα given the rotationally invariant features discussed above. Capra’s
putative Cα locations are then sent into the second part of the algorithm,
lookup, which identifies the sidechains corresponding to each Cα’s. Lookup
uses these same rotationally invariant features, but instead uses a nearest
neighbor approach to find a small subset of the database that best matches
the region of unknown density. Lookup rotationally aligns the best match
to the unknown residue, and places the corresponding atoms into the map.
Finally, textal cleans up its trace using a set of post-processing routines.

1.5.1 Feature extraction

The most important component of textal is its extraction of a set of nu-
merical features from a region of density. These numerical features allow
rapid identification of similar regions from different (solved) maps. A key as-
pect of textal’s feature set is invariance to arbitrary rotations of the region’s
density. This eliminates the need for an expensive rotational search for each

Machine Learning in Structural Biology 23

electron density map

Skeletonize density map

Extract rotation-invariant features

Identify Cα’s using a trained neural network

Trace sidechains

pseudo-atom list

feature vector list

backbone model

complete all-atom model

Build, patch, and stitch chains

predicted distances to Cα

FIGURE 1.14: A flowchart of textal.

fragment; additionally, a discrete rotational search is likely to underestimate
some match scores if the true rotation falls between rotational samples.

Textal uses 76 such numerical features to describe a region of density
in a map. These features include 19 rotationally invariant features, sampled
at four different radii: 3,4,5 and 6Å. The use of multiple radii is critical for
differentiation between side-chains: large residues often look similar at smaller
radii but greatly differ at 6Å, while small amino acids may have no density in
the outer radii and thus are only differentiated at small radii.

The 19 rotation-invariant features fall into four basic classes, shown in Ta-
ble 1.1. The first class describes statistical properties of these neighborhoods
of density, treating density values in the neighborhood as a probability dis-
tribution. These features include mean, standard deviation, skewness, and
kurtosis, the last two of which provide descriptions of the lopsidedness and
peakedness of the distribution of density values. The second class of features
is really just a single feature: the distance from the center of mass to the
center of the neighborhood.

A third class of descriptors includes moments of inertia (MOI), which pro-
vides six features describing how elliptical is the density distribution. Mo-
ments of inertia are calculated as the Eigenvectors of the inertia matrix I:

I =
∑

i

ρi

∣∣∣∣∣∣
y2

i + z2
i −xiyi −xizi

−xiyi x2
i + z2

i −yizi

−xizi −yizi x2
i + y2

i

∣∣∣∣∣∣

Above, ρi is the density at point 〈xi, yi, zi〉. As a rotation-invariant descrip-
tion, textal only considers the moments and the ratios between moments,
not the axes themselves (the Eigenvectors of the inertia matrix).

The final class of features represent higher-level geometrical descriptors of
the region. Three “spokes of maximal density” are extended from the center
of the region, spaced > 75◦ apart. These aim to approximate the direction

24

TABLE 1.1: The rotation invariant features used by textal

Class Description Quantity

Statistical Features of Density 4
average, standard deviation, skewness, kurtosis

Center of Mass 1
distance from center of sphere to center of mass

Moments of Inertia 6
magnitude of primary, secondary, tertiary moments;
ratios between these moments

Spokes/Geometry of Density 8
angles between three “spokes of maximal density”
sum of angles, radial densities of each spoke,
area of triangle formed by spokes

ALGORITHM 1.4: Textal’s capra subroutine for calculating the
initial backbone trace
Given: electron density map M
Find: putative backbone trace X = {~xi}
M′ ← normalize(M)
pseudoAtoms← skeletonize(M′)
for pi ∈ pseudoAtoms do

F← rotation invariant-features in a neighborhood around pi

distance-to-Cα ← neuralNetwork(F)
end
X← construct chain using predicted distances-to-Cα

of the backbone N-terminus, the backbone C-terminus, and the sidechain.
Rotation-invariant features derived from these spokes include the min, mid,
max, and sum of the angles, the density sum along each spoke, and the area
of the triangle formed by connecting the end points of the spokes.

1.5.2 Backbone tracing

Capra, a subroutine of textal, produces the initial Cα trace. Capra
constructs a backbone chain using a feed-forward neural network. An overview
of the process is illustrated in Algorithm 1.4.

In order to accurately compare maps, capra begins by first normalizing
density values in the map, ensures feature values from different maps are com-
parable. Next, capra skeletonizes the map, creating a trace of pseudo-atoms
that identifies the medial axis of some density map contour. Figure 1.15a il-
lustrates this skeletonization. This trace is a very crude approximation of the
backbone, and may traverse the side-chains or form multiple distinct chains.

A feed-forward neural network – a nonlinear function approximator used
for both classification and regression – is trained to learn which pseudo-atoms

Machine Learning in Structural Biology 25

(c)

(a)

(b)

FIGURE 1.15: Textal’s intermediate steps: (a) the skeletonized density
map, which crudely approximates the protein backbone, (b) a backbone trace,
which textal builds by determining Cα’s from the skeleton points, and (c)
the final determined structure.

correspond to actual Cα’s. Specifically, the network is trained on a set of
previously solved maps to predict the distance of each pseudo-atom to the
nearest Cα. The rotation invariant features are inputs to the network; a
single output node estimates the distance to the closest Cα. A hidden layer
of 20 sigmoidal units fully connects input and output layers.

Given a predicted distance-to-Cα for each pseudo-atom, capra uses a
greedy trace to find a linear chain linking Cα’s together. Further post-
modifications have been added to improve performance of capra, such as
refining chains and patching missing links. The output for capra, on the
sample map at 3.5Å resolution, is illustrated in Figure 1.15b.

1.5.3 Sidechain placement

After capra returns its predicted backbone trace, textal must next iden-
tify the residue type associated with each Cα. This identification is performed
by a subroutine lookup. Algorithm 1.5 shows a pseudocode overview of
lookup. Essentially, the subroutine compares the density around each Cα

to a database of solved maps to identify the residue type. Lookup uses

26

ALGORITHM 1.5: Textal’s lookup subroutine for placing
sidechains.
Given: electron density map M, backbone trace X = {xi}
Find: all-atom protein model

for ~xi ∈ X do
F← rotation-invariant features in a neighborhood around xi

N← k examples in DB minimizing weighted Euclidean distance
for ~ni ∈ N do

~n′i ← optimal superposition of ~ni into map at ~xi

scorei ← RSCC(ni,M(~xi)) // see Equation 1.9
end
Choose n′i maximizing scorei

Add individual atoms of n′i to model
end

textal’s rotation invariant features, and builds a database of feature vec-
tors corresponding to Cα’s in solved maps. To determine the residue type
of an unknown region of density, lookup finds the nearest neighbors in the
database, using weighted Euclidian distance:

D(ρ1||ρ2) =
[∑

i

λi ·
(
Fi(ρ1)− Fi(ρ2)

)2
]1/2

(1.16)

Above, Fi refers to the ith feature in the vector, while ρ1 and ρ2 are two regions
of density. Feature weights λi are optimized to maximize similarity between
matching regions and minimize between non-matching regions, where ground
truth is the optimally-aligned RSCC (Equation 1.9). Textal sets weights
using the slider algorithm [20] which considers features pairwise to determine
a good set of weights.

Since information is lost when representing a region as a rotation invariant
feature vector, the nearest neighbor in the database does not always corre-
spond to the best-matching region. Therefore, lookup keeps the top k regions
– those with the lowest Euclidean distance – and considers these for a more
time-consuming RSCC computation (see Equation 1.9). Ideally, lookup
wants to find the rotation and translation of each of the k regions to maxi-
mize this correlation coefficient. It quickly approximates this optimal rotation
and translation by aligning the moments of inertia between the template den-
sity region ρ1 and target density region ρ2. Lookup computes the real-space
correlation at each alignment, and selects the highest-correlated candidate.
Finally, lookup retrieves the translated and rotated coordinated atoms of
the top-scoring candidate and places them in the model.

Machine Learning in Structural Biology 27

1.5.4 Post-processing routines

Since each residue’s atoms are copied from previous examples and glued
together in the density map, the model produced by lookup may contain
some physically infeasible bond lengths, bond angles, or φ−ψ torsion angles.
Textal’s final step is improving the model using a few simple post-processing
heuristics. First, lookup often reverses the backbone direction of a residue;
textal’s post-processing makes sure that all chains are oriented in a consis-
tent direction. Refinement, like that of arp/warp, corrects improper bond
lengths and bond angles, iteratively moving individual atoms to fit the density
map better. Finally, textal takes into account the target protein’s sequence
to fix mismatched residues.

Textal makes use of a provided sequence by aligning the map-determined
model sequence to the provided input sequence, using a Smith-Waterman
dynamic-programming alignment. If there is agreement between the sequences
above some threshold, then a second lookup pass corrects residues where the
alignment disagrees. In this second pass, lookup is restricted to only consider
residues of the type indicated by the sequence alignment. Like resolve,
textal’s end result is a complete all-atom protein model, illustrated for our
example map in Figure 1.15c.

1.5.5 Discussion

Textal – like resolve – uses higher-order constructs than atoms in or-
der to successfully solve low-quality maps. In practice, textal works well
on maps at around 3Å resolution. Textal’s key contribution is the use of
rotation-invariant features to recognize patterns in the map. This feature rep-
resentation allows accurate Cα identification using a neural network; it also
does well at classification of amino-acid type. Textal tends to do better than
resolve at sidechain identification due to this feature set. One key shortcom-
ing, however, is limiting the initial backbone trace to skeleton points in the
density map. In very poor maps, skeletonization is inaccurate; this is in part
responsible for textal’s failure in maps worse than 3Å. However, textal
has successfully employed previously solved structures and domain knowledge
from structural biology to produce an accurate map interpretation.

1.6 acmi

Acmi (automatic crystallographic map interpreter) is a recent method de-
veloped by DiMaio et al. for tracing protein backbones in poor-quality (3 to
4Å resolution) density maps [19]. Acmi takes a probabilistic approach to elec-
tron density map interpretation, finding the most likely layout of the backbone

28

electron density map

Construct and match 5-mer templates

Infer locations conditioned on sequence

Choose maximum-marginal locations

a priori probability that AAi is at location x

marginal probability that AAi is at location x

Cα-trace model

FIGURE 1.16: A flowchart of acmi.

under some likelihood function. This likelihood function takes into account
local matches to the density map as well as the global pairwise configuration
of residues. The key difference between acmi and the preceding methods is
that acmi represents each residue not as a single location, but rather as a com-
plete probability distribution over the full electron density map. This property
– not forcing each residue to a single location – is advantageous as it naturally
handles noise in the map, errors in the input sequence, and disordered regions
in the protein.

Figure 1.16 shows a high-level overview of acmi. The algorithm is comprised
of two main components: a local matching component that probabilistically
matches individual amino acids to the density map, and a global constraint
component where the backbone chain is probabilistically refined from the local
matches. Global refinement is based on physical laws governing the structure
of proteins. Acmi’s key is an efficient inference algorithm that determines the
most probable physically feasible backbone trace in an electron density map.

1.6.1 Local matching

The local matching component of acmi is provided the density map and the
protein’s amino acid sequence. It computes, for each residue in the protein,
a probability distribution Pi(~wi) over all locations ~wi in the unit cell. This
probability distribution reflects the probability that residue i is at position
and orientation ~wi in the unit cell.

Acmi’s local match – shown in Algorithm 1.6 – is based upon a 5-mer (that
is, a polypeptide sequence five amino-acids in length) search. Using a set of
previously solved structures, acmi first constructs a basis set of structures de-
scribing the conformational space of each 5-mer in the protein. Acmi searches
for each of these fragments in the map over all translations and rotations. This
local search produces – for each residue i – an estimated probability distrib-
ution of that residue i’s location and orientation in the unit cell, Pi(~wi).

Machine Learning in Structural Biology 29

ALGORITHM 1.6: Acmi’s local-matching algorithm
Given: sequence seq, electron density map M
Find: probability distribution Pi(~wi) of each residue over map

for each residue seqi ∈ seq do
N← instances of 5-mer 〈seqi−2 . . . seqi+2〉 from PDB
C← cluster N, extract centroids
λi ← cluster weights
for each cluster centroid cj ∈ C do

t(~wi)← Perform 6D search for cj over density map
Use a tuning set to convert t(~wi) to probabilities Pij(~wi)

end

Pi(~wi)←
∑

clusters j

λiPij(~wi)

end

1.6.1.1 Constructing a sequence-specific 5-mer basis set

Given some 5-amino-acid sequence, acmi uses the Protein Data Bank (PDB),
a repository of solved protein structures, to find all the instances of this se-
quence. If there are fewer than fifty such instances, acmi considers “near-
neighbors” (using the PAM-120 score, a measure of amino-acid similarity)
until at least fifty distinct conformations are available. It uses these struc-
tures to represent the conformational space of the given 5-mer.

Searching for all these conformations in the electron density map is wasteful,
because many are redundant, so acmi clusters the structures into a smaller
number of distinct conformations, representing each cluster with a single “cen-
tral” instance (or centroid) of that cluster and a numeric weight. Acmi stores
non-centroid instances from each cluster as well for tuning. Clustering uses
the all-atom root mean squared deviation (RMSd) as a distance metric. Acmi
can perform this clustering process in advance for all 3.2×106 possible 5-mers.

1.6.1.2 Searching for 5-mer centroid fragments

Given a protein sequence, acmi considers the 5-mer sequence centered at
each amino-acid. It extracts the fragments which represent the conforma-
tional space of that sequence, which it learns from the clustering process,
and searches the density map for these fragments. Figure 1.17 illustrates this
process graphically. Given these fragments and a resolution limit, acmi builds
an expected density map for each fragment. Then, at each map location, acmi
computes the standardized mean squared electron density difference t(~x) be-
tween the map and the fragment. Notice that this t(~x) is the same density
map similarity function employed by resolve, shown in Equation 1.7.

Acmi’s fragment search is a 6D search: it considers every rotation of a frag-
ment at every location in the map. Using fffear’s FFT-based convolution,

30

centroid

density map

tuning set

scores ti(x)

score distribution
probability distribution

P(residuei at x)

FIGURE 1.17: An overview of the 5-mer template matching process. Given
a cluster of 5-mers for residue i, acmi performs a 6D search for the fragment
in the density map. Acmi also matches the fragment to a tuning set of known
structures, using Bayes’ rule to determine a probability distribution from the
match scores t(~w).

one can compute this function very efficiently [11]. Acmi then stores – at each
position – the best-matching 5-mer fragment and corresponding rotation.

The electron density difference function t(~x) is a good measure of similarity
between regions of density; however, it doesn’t allow comparison of scores from
different templates. Acmi uses each cluster’s tuning set in order to convert
squared density differences into a probability distribution over the unit cell.
To compute probabilities, Bayes’ rule is used:

P (res. i at ~xi|t(~xi)) =
P (t(~xi)|res. i is at ~xi) · P (res. i at ~xi)

P (t(~xi))
(1.17)

Acmi computes terms on the right-hand side: the denominator, Pi(t(~xi)) is
the distribution of match scores over the (unsolved) map. The prior proba-
bility, Pi(res. i at ~xi), is simply a normalization term. Acmi drops this term
and simply ensures that probabilities over the map are normalized to sum to
the number of copies of the 5-mer in the map. However, the first term in the
numerator - the distribution of scores when the 5-mer matches the map - is
trickier to compute. Acmi estimates this term using a tuning set saved from
an earlier step. This tuning set contains instances of a particular 5-mer con-
formation other than the centroid. Matching the centroid 5-mer structure’s
density to each tuneset structure’s density gives an accurate estimate to this
term. As shorthand, we will refer to this probability distribution simply as
Pi(~xi) for the remainder of this section. Figure 1.18a plots this probability
distribution for two residues in the example protein.

Machine Learning in Structural Biology 31

(a)

(b)

(c)

GLU20 ALA60

GLU20 ALA60

FIGURE 1.18: Intermediate steps in acmi’s structure determination:
(a) the matching probability distributions Pi(~xi) on two residues, GLU20 and
ALA60, contoured at p = 10−4, (b) the marginal probability distributions over
the same two residues, and (c) the final (backbone-only) model, each residue
shaded by likelihood (darker is more likely).

1.6.2 Global constraints

Given each residue’s independent probability distribution over the unit cell,
Pi(~xi), acmi accounts for global constraints (enforced by physical feasibility)
of a conformation by modeling the protein using a pairwise Markov field. A
pairwise Markov field defines the joint probability distribution over a set of
variables as a product of potential functions defined over vertices and edges
in an undirected graph (see Figure 1.19).

1.6.2.1 Markov field model

Formally, the graph G = (V, E) consists of a set of nodes i ∈ V connected by
edges (i, j) ∈ E . Each node in the graph is associated with a (hidden) random
variable ~wi ∈ W, and the graph is conditioned on a set of observation vari-
ables M. Each vertex has a corresponding observation potential ψi(~wi,M),
and each edge is associated with an edge potential ψij(~wi, ~wj). Then, the
probability of a complete trace W is:

P (W|M) ∝
∏

(i,j)∈E

ψij(~wi, ~wj)×
∏
i∈V

ψi(~wi,M) (1.18)

Probabilistic inference finds the labels W = {~wi} maximizing this probability,
given some M.

32

ALA GLY LYS LEU
ALA GLY LYS LEU
ALA GLY LYS LEU

 observational potentials ψi

 adjacency potentials ψadj

 occupancy potentials ψocc

FIGURE 1.19: Acmi’s protein backbone model. The joint probability of
a conformation of residues is the product of an observation potential psii at
each node, (b) an adjacency potential between adjacent residues, and (c) an
occupancy potential between all pairs of non-adjacent residues..

To encode a protein in a Markov field model, acmi constructs an undirected
graph where each node i corresponds to an amino-acid residue in the protein.
The label ~wi = 〈~xi, ~qi〉 for each amino-acid consists of seven terms: the 3D
Cartesian coordinates ~xi of the residue’s alpha Carbon (Cα), and four “orien-
tation” parameters ~qi (three rotational parameters plus a “bend” angle). The
observation potential ψi(wi,M) associated with each residue is the previously
computed probability distribution Pi(~xi), with – at each position – all the
probability mass stored in the orientation of the best match.

Edges in the graph enforce global constraints in a pairwise manner. The
graph is fully-connected (that is, every pair of residues is connected by an
edge); DiMaio breaks the potential functions ψij associated with each edge
into two types. Adjacency potentials ψadj associated with edges between ad-
jacent residues ensure that these neighboring Cα’s maintain the proper 3.8
spacing, and Cα triples maintain the proper bend angle. Occupancy poten-
tials ψocc on all other edges prevent two residues from occupying the same
region in three-dimensional space. Thus, the full joint probability of a trace,
given a map is:

P (W|M) ∝
∏

(~wi, ~wj)∈W,|i−j|=1

ψadj(~wi, ~wj)

×
∏

(~wi, ~wj)∈W,|i−j|>1

ψocc(~wi, ~wj)

×
∏

~wi∈W

ψi(~wi,M) (1.19)

Machine Learning in Structural Biology 33

1.6.2.2 Adjacency potentials

Adjacency potentials, which connect every neighboring pair of residues, are
the product of two constraining functions, a distance constraint function and
a rotational constraint function:

ψadj(~wi, ~wj) = px(||~xi − ~xj ||) · pθ(~wi, ~wj) (1.20)

In proteins, the Cα - Cα distance is a nearly invariant 3.8Å. Thus, the
potential px takes the form of a tight Gaussian (σ = 0.03Å) around this ideal
value, softened a bit for grid effects. Acmi defines the potential pθ using an
alternate parameterization of the angular parameters ~qi.

Specifically, acmi represents these four degrees of freedom as two pairs of
θ − φ spherical coordinates: the most likely direction of the forward (i + 1)
residue and the backward (i−1) residue. When matching the 5-mer templates
into the density map, at each location xi, acmi stores four values – θb, φb,
θf , and φf - indicating the direction of both adjacent Cα in the rotated,
best-matching 5-mer.

The angular constraint function pθ is then – in each direction – a fixed-
width Gaussian on a sphere, centered on this preferred orientation, (θb, φb) or
(θf , φf).

1.6.2.3 Occupancy potentials

Occupancy potentials ensure that two residues do not occupy the same
location in space. They are defined independently of orientation, and are
merely a step function that constrains two (nonadjacent) Cα’s be at least
3Å apart. It is in this structural potential function that acmi deals with
crystallographic symmetry, by ensuring that all crystallographic copies are at
least 3Å apart:

ψocc(~wi, ~wj) =

1
(

min
symmetric

transforms K
||xi −K(xj)||

)
≥ 3.0Å

0 otherwise
(1.21)

Multiple chains in the asymmetric unit are also handled by acmi: edges en-
forcing occupancy constraints fully connect separate chains.

1.6.2.4 Tracing the backbone

Acmi’s backbone trace – shown in Algorithm 1.7 – is equivalent to finding
the labels W = {~wi} that maximize the probability of Equation 1.18. Since
the graph over which the joint probability is defined contains loops, finding an
exact solution is infeasible (dynamic programming can solve this in quadratic
time for graphs with no loops). Acmi uses belief propagation (BP) to compute
an approximation to the marginal probability for each residue i (that is, the
full joint probability with all but one variable summed out). Acmi chooses
the label for each residue that maximizes this marginal as the final trace.

34

ALGORITHM 1.7: Acmi’s global-constraint algorithm
Given: individual residue probability distributions Pi(~wi)
Find: approximate marginal probabilities b̂i(~wi)

∀i initialize belief b̂0i (~wi) to Pi(~wi)
repeat

for each residue i do
b̂i(~wi)← Pi(~wi)
for each residue j 6= i do

// compute incoming message
if |i− j| = 1 then

mn
j→i(~wi)←

∫
~wj
ψadj(~wi, ~wj)× b̂j

mn−1
i→j

(~wj)d~wj

else
mn

j→i(~wi)←
∫

~wj
ψocc(~wi, ~wj)× b̂j(~wj)d~wj

end

// aggregate messages
b̂i(~wi)← b̂i(~wi)×mn

j→i(~wi)
end

end
until (b̂i’s converge)

Belief propagation is an inference algorithm - based on Pearl’s polytree
algorithm for [21] Bayesian networks - that computes marginal probabilities
using a series of local messages. At each iteration, an amino acid computes
an estimate of its marginal distribution (i.e., an estimate of the residue’s
location in the unit cell) as the product of that node’s local evidence ψi and
all incoming messages:

b̂ni (~wi) ∝ ψi(~wi,M)×
∏

j∈Γ(i)

mn
j→i(~wi) (1.22)

Above, the belief b̂ni at iteration n is the best estimate of residue i’s marginal
distribution,

b̂ni (~wi) ≈
∑
~w0

. . .
∑
~wi−1

∑
~wi+1

. . .
∑
~wN

P (W,M) (1.23)

Message update rules determine each message:

mn
j→i(~wi) ∝

∫
~wj

ψij(~wi, ~wj)× ψj(~wj ,M)

×
∏

k∈Γ(j)\i

mn−1
k→j(xj) d~wj (1.24)

Machine Learning in Structural Biology 35

Computing the message from j to i uses all the messages going into node j
except the message from node i. When using BP in graphs with loops, such as
acmi’s protein model, there are no guarantees of convergence or correctness;
however, empirical results show that loopy BP often produces a good approx-
imation to the true marginal [22]. On the example protein, acmi computes
the marginal distributions shown in Figure 1.18b.

To represent belief and messages, acmi uses a Fourier-series probability
density estimate. That is, in the Cartesian coordinates ~xi, marginal distribu-
tions are represented as a set of 3-dimensional Fourier coefficients fk, where,
given an upper-frequency limit, (H,K,L):

bni (~xi) =
H,K,L∑
h,k,l=0

fhkl × e−2πi(~xi�〈h,k,l〉) (1.25)

In rotational parameters, acmi divides the unit cell into sections, and in each
section stores a single orientation ~qi. These orientations correspond to the
best-matching 5-mer orientation. More importantly, these stored orientations
and are not updated by belief propagation: messages are independent of the
rotational parameters ~qi.

To make this method tractable, acmi approximates all the outgoing occu-
pancy messages at a single node:

mn
j→i(~wi) ∝

∫
~wj

ψocc(~wi, ~wj)×
bnj (~wj)d~wj

mn−1
i→j (~wj)

(1.26)

The approximation drops the denominator above:

mn
j→∗(~wi) ∝

∫
~wj

ψocc(~wi, ~wj)× bnj (~wj)d~wj (1.27)

That is, acmi computes occupancy messages using all incoming messages to
node j including the message from node i. All outgoing occupancy messages
from node j, then, use the same estimate. Acmi caches the product of all
occupancy messages

∏
imi→∗. This reduces the running time of each iteration

in a protein with n amino acids from O(n2) to O(n).
Additionally, acmi quickly computes all occupancy messages using FFTs:

F
[
mn

j→i(~wi)
]

= F
[
ψocc(~wi, ~wj)

]
×F

[(∏
mn−1

j→i(~wi)
)]

(1.28)

This is possible only because the occupancy potential is a function of the
difference of the labels on the connected nodes, ψocc(~wi, ~wj) = f(||~xi − ~xj ||).

Finally, although acmi computes the complete marginal distribution at each
residue, a crystallographer is only interested in a single trace. The backbone
trace consists of the locations for each residue that maximize the marginal

36

probability:

~w∗
i =arg max

~wi

b̂i(~wi)

= arg max
~wi

ψi(~wi,M)×
∏

j∈Γ(i)

mn
j→i(~wi) (1.29)

Acmi’s backbone trace on the example map is illustrated in Figure 1.18c.
The backbone trace is shaded by confidence: since acmi computes a complete
probability distribution, it can return not only a putative trace, but also
a likelihood associated with each amino acid. This likelihood provides the
crystallographer with information about what areas in the trace are likely
flawed; acmi can also produce a high-likelihood partial trace suitable for phase
improvement.

1.6.3 Discussion

Acmi’s unique approach to density map interpretation allows for an accu-
rate trace in extremely poor maps, including those in the 3 to 4Å resolution
range. Unlike the other residue-based methods, acmi is model-based. That is,
it constructs a model based on the protein’s sequence, then searches the map
for that particular sequence. Acmi then returns the most likely interpreta-
tion of the map, given the model. This is in contrast to textal and resolve
which search for “some backbone” in the map, then align the sequence to
this trace after the fact. This makes acmi especially good at sidechain iden-
tification; even in extremely bad maps, acmi correctly identifies a significant
portion of residues. Unfortunately, acmi also has several shortcomings. Re-
quiring complete probability distributions for the location of each residue is
especially time consuming; this has limited the applicability of the method
so far. Additionally, in poor maps, belief propagation fails to converge to a
solution, although in these cases a partial trace is usually obtained. By incor-
porating probabilistic reasoning with structural biology domain knowledge,
acmi has pushed the limit of interpretable maps even further.

1.7 Conclusion

A key step in determining protein structures is interpreting electron density
maps. In this area, bioinformatics has played a key role. This chapter de-
scribes how four different algorithms have approached the problem of electron
density map interpretation:

• The warpntrace procedure in arp/warp was the first method devel-
oped for automatic density map interpretation. Today, it is still the most

Machine Learning in Structural Biology 37

widely used method by crystallographers. Arp/warp uses an “atom-
level” technique in which free atoms are first placed into the density
map, free atoms are next linked into chains introducing constraints, and
finally, the combined model is refined to better explain the map. The
method iterates through these three phases, at each iteration using the
partial model to improve the map. Because it works at the level of
individual atoms, it requires 2.3Å or better map resolution.

• Resolve is a method that searches for higher-level constructs – amino
acids and secondary structure elements – than arp/warp’s atom-level
method. Consequently, it produces accurate traces in poor-quality (around
3Å) electron density maps, unsolvable by arp/warp. It, too, is widely
used by crystallographers. Resolve begins by matching short secondary-
structure fragments to the maps, then uses a large fragment library to
extend these matches. Finally, overlapping matches are merged in a
greedy fashion, and sidechains are traced. Incorporating structural do-
main knowledge is key to this method’s success.

• Textal also accurately interprets medium to low resolution (2 to 3Å),
using residue-level matching. It represents regions of density as a vector
of rotation-invariant features. This alternate representation serves sev-
eral purposes. It is used to learn a classifier to identify Cα’s, and it is also
used to recognize the residue type of each putative Cα through a data-
base comparison. The classifier is also very well suited to identifying the
residue type in a given region, making it more accurate than resolve
in this respect. Additionally, textal’s rotation-invariant representa-
tion enables fast matching of regions of density. This allows textal to
easily make use of previously solved structures in its map interpretation,
providing accurate traces even in poor-quality maps.

• Acmi uses a probabilistic model to trace protein backbones in poor-
quality (3 to 4Å resolution) density maps. It finds the most likely lay-
out of the backbone under a likelihood function which takes into account
local matches to the density map as well as the global pairwise configu-
ration of residues. Unlike other methods, acmi represents each residue
not as a single location but as a probability distribution over the entire
density map. Also unlike other approaches, it constructs a model based
on the protein’s sequence, and finds the most likely trace of that par-
ticular sequence in the density map. Acmi’s probabilistic, model-based
approach results in accurate tracing and sidechain identification at poor
resolutions.

As each of these methods extended the limit of what resolution maps are
automatically interpreted, they brought with them two things: first, a higher-
level “basic construct” at which the algorithm searches, and second, better
incorporation of structural domain knowledge. These two key aspects are

38

what enables interpretation in maps where individual atoms are not distin-
guishable, and in the future, what will extend the threshold of interpretation
further.

As fewer and fewer fine details are visible in poor-resolution maps, algo-
rithms must use a higher and higher level basic construct – that is, the tem-
plate for which they search – in order to be robust against blurred details.
Arp/warp has had success when most atoms are visible in the map. If in-
dividual atoms are blurred out, the atom-level method will fail. However, a
residue-based method like textal – which will locate amino acids assuming
entire residues are not blurred – is robust enough to handle interpretation
when atom details are unclear. Similarly, using secondary-structure elements
allows even better interpretation. Probabilistic methods like acmi take this
still further: its interpretation considers a single flexible protein-sized element,
and is robust enough to handle maps where entire residues are indistinguish-
able.

Another important feature of these methods is the increasing use of struc-
tural domain knowledge. In a way, this makes sense: the crystallographers
task is inherently no different than that of the ab initio protein folding al-
gorithm. A crystallographer simply has the assistance of a “picture” of the
protein (the density map). All four methods use structural domain knowl-
edge, by employing previous solved structures in model building. Primarily,
these structures are used in the construction of a set of “representative frag-
ments;” however, acmi and textal also use previously solved structures to
learn model parameters. Future methods will increasingly rely on such domain
knowledge.

In the future, with the rising popularity of high-throughput structure de-
termination, automated map interpretation methods will play a significant
role. Improvements in laboratory techniques are producing density maps at
a faster rate. In addition, experimental techniques such as cryo-electron mi-
croscopy are producing density maps that approach 5-6Å resolution, and are
continually improving. Automatically determining structure from maps of this
quality will be increasingly important. To further extend the limit of what
maps are interpretable, automated interpretation techniques will need to use
more domain knowledge, and consider searching not for a single residue or a
single tripeptide, but rather entire proteins, probabilistically. Providing au-
tomated systems with increasing amounts of a crystallographer’s “expertise”
is key to future improvements in these methods.

Acknowledgements

This work supported by NLM grant 1R01 LM008796-01 and NLM Grant
1T15 LM007359-01. The authors would also like to thank George Phillips and
Tom Ioerger for assistance in writing this chapter.

References

[1] B. Rost and C. Sander (1993). Prediction of protein secondary structure
at better than 70% accuracy. J Mol Biol.

[2] G. Rhodes (2000). Crystallography Made Crystal Clear. Academic Press.

[3] J. Abrahams, R. De Graaff (1998). New developments in phase refine-
ment. Curr Opin Struct Biol.

[4] S. Russell and P. Norvig (1995). Artificial Intelligence: A Modern Ap-
proach. Prentice Hall.

[5] T. Mitchell (1997). Machine Learning. McGraw-Hill.

[6] V. Lamzin and K. Wilson (1993). Automated refinement of protein mod-
els. Acta Cryst.

[7] A. Perrakis, T. Sixma, K. Wilson and V. Lamzin (1997). wARP: Im-
provement and extension of crystallographic phases by weighted averag-
ing of multiple refined dummy atomic models. Acta Cryst.

[8] R. Morris, A. Perrakis and V. Lamzin (2002). ARP/wARP’s model-
building algorithms: the main chain. Acta Cryst.

[9] J. Greer (1974). Three-dimensional pattern recognition. J Mol Biol.

[10] L. Leherte, J. Glasgow, K. Baxter, E. Steeg and S. Fortier (1997). Analy-
sis of three-dimensional protein images. JAIR.

[11] K. Cowtan (2001). Fast Fourier feature recognition. Acta Cryst.

[12] T. Oldfield (2001). A number of real-space torsion-angle refinement tech-
niques for proteins, nucleic acids, ligands and solvent. Acta Cryst.

[13] T. Terwilliger (2002). Automated main-chain model-building by
template-matching and iterative fragment extension. Acta Cryst.

[14] T. Terwilliger (2002). Automated side-chain model-building and se-
quence assignment by template-matching. Acta Cryst.

[15] D. Levitt (2001). A new software routine that automates the fitting of
protein X-ray crystallographic electron density maps. Acta Cryst.

[16] T. Ioerger, T. Holton, J. Christopher and J. Sacchettini (1999). TEX-
TAL: A pattern recognition system for interpreting electron density
maps. Proc ISMB.

0-8493-0052-5/00/$0.00+$.50
c© 2001 by CRC Press LLC 39

40 References

[17] T. Ioerger and J. Sacchettini (2002). Automatic modeling of protein
backbones in electron density maps via prediction of C-alpha coordi-
nates. Acta Cryst.

[18] K. Gopal, T. Romo, E. Mckee, K. Childs, L. Kanbi, R. Pai, J. Smith,
J. Sacchettini and T. Ioerger (2005). TEXTAL: Automated crystallo-
graphic protein structure determination. Proc. IAAI.

[19] F. DiMaio, J. Shavlik and G. Phillips (2006). A probabilistic approach
to protein backbone tracing in electron density maps. Proc ISMB.

[20] K. Gopal, T. Romo, J. Sacchettini and T. Ioerger (2004). Weighting
features to recognize 3D patterns of electron density in X-ray protein
crystallography. Proc CSB.

[21] J. Pearl (1988). Probabilistic Reasoning in Intelligent Systems. Morgan
Kaufman, San Mateo.

[22] K. Murphy, Y. Weiss, and M. Jordan (1999). Loopy belief propagation
for approximate inference: An empirical study. Proc. UAI.

