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ABSTRACT
Motivation: One bottleneck in high-throughput protein crystallography
is interpreting an electron-density map; that is, fitting a molecular
model to the 3D picture crystallography produces. Previously, we
developed ACMI, an algorithm that uses a probabilistic model to infer
an accurate protein backbone layout. Here we use a sampling method
known as particle filtering to produce a set of all-atom protein models.
We use the output of ACMI to guide the particle filter’s sampling,
producing an accurate, physically feasible set of structures.
Results: We test our algorithm on ten poor-quality experimental
density maps. We show that particle filtering produces accurate all-
atom models, resulting in fewer chains, lower sidechain RMS error,
and reduced R factor, compared to simply placing the best-matching
sidechains on ACMI’s trace. We show that our approach produces
a more accurate model than three leading methods – TEXTAL,
RESOLVE, and ARP/WARP – in terms of main chain completeness,
sidechain identification, and crystallographic R factor.
Availability: Source code and experimental density maps available at
ftp://ftp.cs.wisc.edu/machine-learning/shavlik-group/programs/acmi/.
Contact: dimaio@cs.wisc.edu

1 INTRODUCTION
Knowledge of the spatial arrangement of constituent atoms in a
complex biomolecules, such as proteins, is vital for understanding
their function. X-ray crystallography is the primary technique for
determination of atomic positions, or the structure, of biomolecules.
A beam of X-rays is diffracted by a crystal, resulting in a set of
reflections that contain information about the molecular structure.
This information can be interpreted to produce a 3D image of
the macromolecule, which is usually represented by an electron-
density map. Interpretation of these maps requires locating the
atoms in complex three-dimensional images. This is a difficult,
time-consuming process, that may require weeks or months of an
expert crystallographer’s time.

Our previous work (DiMaio et al., 2006) developed the
automatic interpretation tool ACMI (Automatic Crystallographic
Map Interpreter). ACMI employs probabilistic inference to compute
a probability distribution of the coordinates of each amino acid,
given the electron-density map. However, ACMI makes several
simplifications, such as reducing each amino acid to a single atom
and confining the locations to a coarse grid. In this work we
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introduce the use of a statistical sampling method called particle
filtering (PF) (Doucet et al., 2000) to construct all-atom protein
models, by stepwise extention of a set of incomplete models
drawn from a distribution computed by ACMI. This results in a
set of probability-weighted all-atom protein models. The method
interprets the density map by generating a number of distinct protein
conformations consistent with the data. We compare the single
model that best matches the density map (without knowing the true
solution) with the output of existing automated methods, on multiple
sets of crystallographic data which required considerable human
effort to solve. We also show that modeling the data with a set of
structures, obtained from several particle-filtering runs, results in a
better fit than using one structure from a single particle-filtering run.
Particle filtering enables the automated building of detailed atomic
models for challenging protein crystal data, with a more realistic
representation of conformational variation in the crystal.

2 PROBLEM OVERVIEW AND RELATED WORK
In recent years, considerable investment into structural genomics
(i.e. high-throughput determination of protein structures) has
yielded a wealth of new data (Berman & Westbrook, 2004;
Chandonia & Brenner, 2006). The demand for rapid structure
solution is growing, and automated methods are being deployed
at all stages of the structural determination process. These new
technologies include cell-free methods for protein production
(Sawasaki et al., 2002), the use of robotics to screen thousands
of crystallization conditions (Snell et al., 2004), and new software
for automated building of macromolecular models based on the
electron-density map (DiMaio et al., 2006; Morris et al., 2003;
Ioerger & Sacchettini, 2003; Terwilliger, 2002; Cowtan, 2006). The
last problem is addressed in this study.

2.1 Density-map interpretation
A beam of X-rays scattered by a crystalline lattice produces a
pattern of reflections, which are measured by a detector. Given
complete information, i.e., both the amplitudes and the phases of the
reflected photons, one can reconstruct the electron-density map as
the Fourier transform of these complex-valued reflections. However,
the detector can only measure the intensities of the reflections and
not the phases. Thus, a fundamental problem of crystallography lies
in approximating the unknown phases. Our aim is the construction
of an all-atom protein model that best fits a given electron-density
map based on approximate phasing.
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Fig. 1. An overview of density-map interpretation. The density map is
illustrated with contours enclosing regions of higher density; the protein
model uses sticks to indicate bonds between atoms. This figure shows two
protein models fit to the density map, one darker and one lighter.

1Å 2.5Å 4Å

Fig. 2. The effect of varying resolution on electron density of a tryptophan
sidechain, with phases computed from a final atomic model. The effects of
phase error are similar to worsening the resolution.

The electron-density map is defined on a three-dimensional grid
of points covering the unit cell, which is the basic repeating unit
in the protein crystal. A crystallographer, given the the amino-acid
sequence of the protein, attempts to place the amino acids in the unit
cell, based on the shape of the electron-density contours. Figure 1
shows the electron-density map as an isocontoured surface. This
figure also shows two models of atomic positions consistent with
the electron density, where sticks indicate bonds between atoms.

The quality of an electron-density map is limited by its resolution,
which, at its high limit, corresponds to the smallest interplanar
distance between diffracting planes. The highest resolution for
a data set depends on the order in the crystalline packing, the
detector sensitivity, and the brightness of the X-ray source. Figure 2
illustrates the electron density around a tryptophan sidechain at
varying resolution, with “ideal” phases computed from a complete
all-atom model. Note that at 1 Å resolution, the spheres of individual
atoms are clearly visible, while at 4 Å even the overall shape of
the tryptophan sidechain is distorted. Typical resolution for protein
structures lies in the 1.5 – 2.5 Å range.

Another factor that affects the quality of an electron-density
map is the accuracy of the computed phases. To obtain an initial
approximation of the phases, crystallographers use techniques
based on the special features in X-ray scattering produced by
heavy atoms, such as multiple-wavelength or single-wavelength
anomalous diffraction (MAD or SAD) and multiple isomorphous
replacement (MIR). This allows the computation of an initial
electron-density map, the quality of which greatly depends on the
fidelity of the initial phasing. Artifacts produced by phase error
are similar to those of worsening resolution; additionally, high
spatial frequency noise is also present. The interpretation of a poorly
phased map can be very difficult even for a trained expert.

2.2 ACMI’s probabilistic protein backbone tracing
We previously developed a method, ACMI, that produces high-
confidence backbone traces from poor-quality maps. Given a
density map and the protein’s amino-acid sequence, ACMI

... ...GLU THRALASER ALA

Fig. 3. A sample undirected graphical model corresponding to some protein.
The probability of some backbone model is proportional to the product of
potential functions: one associated with each vertex, and one with each edge
in the fully connected graph.

constructs a probabilistic model of the location of each Cα.
Statistical inference on this model gives the most probable backbone
trace of the given sequence in the density map.

ACMI models a protein using an pairwise Markov field. As
illustrated in Figure 3, this approach defines the probability
distribution of a set of variables on an undirected graph. Each
vertex in the graph is associated with one or more variables, and
the probability of some setting of these variables is the product of
potential functions associated with vertices and edges in the graph.

In ACMI’s protein model, vertices correspond to individual
amino-acid residues, and the variables associated with each vertex
correspond to an amino acid’s Cα location and orientation. The
vertex potential ψi at each node i can be thought of as a “prior
probability” on each alpha carbon’s location given the density map
and ignoring the locations of other amino acids. In this model, the
probability of some backbone conformation B = {b1, . . . , bN},
given density map M is given as

P (B|M) =
∏

amino-acid i

ψi(bi|M)×
∏

amino-acids i,j

ψij(bi, bj) (1)

ACMI’sψi considers a 5-mer (5-amino-acid sequence) centered at
each position in the protein sequence, and searches a non-redundant
subset of the Protein Data Bank (PDB) (Wang & Dunbrack, 2003)
for observed conformations of that 5-mer, using the computed
density (conditioned on the map resolution) of each conformation as
a search target. An improvement to our original approach (DiMaio
et al., 2007) uses spherical harmonic decomposition to rapidly
search over all rotations of each search target.

The edge potentials ψij associated with each edge model global
spatial constraints on the protein. ACMI defines two types of edge
potentials: adjacency constraints ψadj model interactions between
adjacent residues (in the primary sequence), while occupancy
constraints ψocc model interactions between residues distant on the
protein chain (though not necessarily spatially distant in the folded
structure). Adjacency constraints make sure that Cα’s of adjacent
amino acids are about 3.8 Å apart; occupancy constraints make sure
no two amino acids occupy the same 3D space. Multiple subunits
in the asymmetric unit are handled by fully connected each subunit
with occupancy-constraining edges.

A fast approximate-inference algorithm finds likely locations of
each Cα, given the vertex and edge potentials. For each amino
acid in the provided protein sequence, ACMI’s inference algorithm
returns the marginal distribution of that amino acid’s Cα location:
that is, the probability distribution taking into account the position of
all other amino acids. Our previous work shows that ACMI produces
more accurate backbone traces than alternative approaches (DiMaio
et al., 2006). Also, ACMI is less prone to missing pieces in the
model, because locations of amino acids not visible in the density
map are inferred from the locations of neighboring residues.
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2.3 Other approaches
Several methods have been developed to automatically interpret
electron-density maps. Given high-quality data (up to about 2.3
Å resolution), one widely used algorithm is ARP/WARP (Morris
et al., 2003). This atom-based method heuristically places atoms in
the map, connects them, and refines their positions. To handle poor
phasing, ARP/ wARP alternates steps in which (a) a model is built
based on a density map, and (b) the map is improved using phases
from iteratively refined model.

Other methods have been developed to handle low-resolution
density maps, where atom-based approaches like ARP/WARP
fail to produce a reasonable model. Ioerger’s TEXTAL (Ioerger
& Sacchettini, 2003) and CAPRA (Ioerger & Sacchettini, 2002)
interpret poor-resolution density maps using ideas from pattern
recognition. Given a sphere of density from an uninterpreted density
map, both employ a set of rotation-invariant statistical features
to aid in interpretation. CAPRA uses a trained neural network to
identify Cα locations. TEXTAL performs a rotational search to place
sidechains, using the rotation-invariant features to identify sidechain
types. RESOLVE’s automated model-building routine (Terwilliger,
2002) uses a hierarchical procedure in which helices and strands are
located by an exhaustive search. High-scoring matches are extended
iteratively using a library of tripeptides; these growing chains are
merged using a heuristic. BUCCANEER (Cowtan, 2006) is a newer
probabilistic approach to interpreting poor quality maps; currently,
the algorithm only constructs a main chain trace.

At lower resolution and with greater phase error, these methods
have difficulty in chain tracing and especially in correctly
identifying amino acids. Unlike ACMI’s model-based approach,
they first build a backbone model, then align the protein sequence to
it. At low resolutions, this alignment often fails, resulting in the
inability to correctly identify sidechain types. These approaches
have a tendency to produce disjointed chains in poor-resolution
maps, which requires significant human labor to repair.

3 METHODS
For each amino acid i, ACMI’s probabilistic inference returns the marginal
probability distribution p̂i(bi) of that amino acid’s Cα position. Previously,
we computed the backbone trace B = {b1, . . . , bN} (where bi describes
the position and rotation of amino-acid i) as the position of each Cα that
maximized ACMI’s belief,

b∗i = arg max
bi

p̂i(bi) (2)

One obvious shortcoming in this previous approach is that biologists are
interested in not just the position b∗i of each Cα, but in the location of every
(non-hydrogen) atom in the protein. Naı̈vely, we could take ACMI’s most-
probable backbone model, and simply attach the best-matching sidechain
from a library of conformations to each of the model’s Cα positions. In
Section 4 we show that such a method works reasonably well. Another issue
is that the marginal distributions are computed on a grid, which may lead to
nonphysical distances between residues when Cα’s are placed on the nearest
grid points. Additionally, ACMI’s inference is approximate, and errors due
to these approximations may produce an incorrect backbone trace, with two
adjacent residues located on opposite sides of the map.

Another problem deals with using a “maximum-marginal backbone
trace,” that is, independently selecting the position of each residue
to maximize the marginal. A density map that contains a mixture of
(physically-feasible) protein conformations may have a maximum-marginal
conformation that is physically unrealistic. Representing each amino acid’s
position as a distribution over the map is very expressive. Simply returning

the Cα position that maximizes the marginal ignores a lot of information.
This section details the application of particle filtering to “explain” the
density map using multiple, physically feasible models.

3.1 Particle-filtering overview
We will use a particle-filtering method called statistical importance
resampling (SIR) (Doucet et al., 2000; Arulampalam et al., 2001), which
approximates the posterior probability distribution of a state sequence
x1:K = {x1, . . . , xK} given observations y1:K as the weighted sum of
a finite number of point estimates x(i)

1:K ,

p(x1:K |y1:K) ≈
N∑

i=1

wiδ(x1:K − x
(i)
1:K) (3)

Here, i is the particle index, wi is particle i’s weight, K is the number of
states (here the number of amino acids), and δ is the Dirac delta function.
In our application, xk describes the position of every non-hydrogen atom in
amino acid k; yk is a 3D region of density in the map.

In our work, the technical term “particle” refers to one specific 3D layout
of all the non-hydrogen atoms in a contiguous subsequence of the protein
(e.g., from amino acid 21 to 25). PF represents the distribution of some
subsequence’s layout using a set of distinct layouts for that subsequence (in
other words, what we are doing is illustrated in Figure 1, where each protein
model is a single particle).

At each iteration of particle filtering, we advance the extent of each
particle by one amino acid. For example, given x21:25 = {x21, . . . .x25}
the position of all atoms in amino acids 21 through 25 (we will use this
shorthand notation for a particle throughout the paper), PF samples the
position of the next amino acid, in this case x26. Ideally, particle filtering
would sample these positions from the posterior distribution: the probability
of x26’s layout given the current particle and the map. SIR is based
on the assumption that this posterior is difficult to sample directly, but
easy to evaluate (up to proportionality). Given some other function (called
the importance function) that approximates the posterior, particle filtering
samples from this function instead, then uses the ratio of the posterior to the
importance function to reweight the particles.

To give an example of an importance function, particle-filtering
applications often use the prior conditional distribution p(xk|xk−1) as the
importance function. After sampling the data, yk will be used to weight
each particle. In our application, this is analogous to placing an amino acid’s
atoms using only the layout of the previous amino acid, then reweighting by
how well it fits the density map.

We use a particle resampling step to address the problem of degeneracy
in the particle ensemble (Kong et al., 1994). As particles are extended, the
variance of particle weights tends to increase, until there are few particles
with non-negligible weights, and much effort is spent updating particles with
little or no weight. To ameliorate this problem, an optional resampling step
samples (with replacement) a new set of N particles at each iteration, with
the probability of selecting a particle proportional to its weight. This ensures
most particles remain on high-likelihood trajectories in state space.

What makes SIR (and particle filtering methods in general) different from
Markov-chain Monte Carlo (MCMC) is that MCMC is concerned with the
stationary distribution of the Markov chain. In particle filtering, one is not
concerned with convergence of the point estimates, rather, the distribution is
simply modeled by the ensemble of particles, whether or not they converge.

3.2 Protein particle model
An overview of our entire algorithm appears in Algorithm 1. For density-
map interpretation, we use the variable xk to denote the position of every
atom in amino-acid k. We want to find the complete (all-atom) protein model
x1:K that best explains the observed electron-density map y. To simplify,
we parameterize xk as a Cα location bk (the same as bi in Equation 2),
and a sidechain placement sk . The sidechain placement identifies the 3D
location of every non-hydrogen sidechain atom in amino-acid k, as well as
the position of backbone atoms C, N, and O.
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Algorithm 1: ACMI-PF’s algorithm for growing a protein
model.
input : density map y, amino-acid marginals p̂k(bk)

output: set of protein models x(i)
1:K and weights w(i)

K

// start at some AA with high certainty about its location
choose k such that p̂k(b

(i)
k ) has minimum entropy

foreach particle i = 1 . . . N do
choose b(i)k at random from p̂k(b

(i)
k )

w
(i)
k ← 1/N

end
foreach residue k do

foreach particle i = 1 . . . N do
// choose bk+1 (or bk−1) given b(i)k

{b∗m
k+1}← choose M samples from φadj(b

(i)
k , bk+1)

w∗m ← belief p̂i(b
∗m
k+1)

b
(i)
k+1 ← choose b∗m

k+1 with probability ∝ w∗m

w
(i)
k+1 ← w

(i)
k ·

∑M
m=1 w

∗m

// choose sk given b(i)k−1:k+1

{s∗l
k } ← sidechain conformations for amino-acid k

p∗l
null ← prob cc(s∗l

k ,EDM[bk]) occurred by chance
sk ← choose s∗l

k with probability ∝ 1/p∗l
null − 1

w
(i)
k+1 ← w

(i)
k ·

∑L
l=1 1/p∗l

null − 1

end
end

Given this parameterization, the Markov process alternates between
placing: (a) Cα positions and (b) sidechain atoms. That is, an iteration of
particle filtering first samples bk+1 (Cα of amino-acid k + 1) given bk ,
or alternatively, growing our particle toward the N-terminus would sample
bk−1 given bk . Then, given the triple bk−1:k+1, we sample sidechain
conformation sk .

3.2.1 Using ACMI-computed marginals to place Cα’s. In our
algorithm’s backbone step we want to sample the Cα position bk+1 (or
bj−1), given our growing trace b(i)j:k , for each particle i. That is, we want

to define our sampling function q(bk+1|b
(i)
j , . . . , b

(i)
k , y). Doucet et al.

(2000) defines the optimal sampling function as the conditional marginal
distribution

q(bk+1|b
(i)
j , . . . , b

(i)
k , y) = p(bk+1|b

(i)
k , y) (4)

While it is intractable to compute Equation 4 exactly, it is straightforward to
estimate using ACMI’s Markov-field model

p(bk+1|b
(i)
k , yk) ∝ p(b

(i)
k , bk+1|y)/p(b

(i)
k |y)

= p̂k+1(bk+1) · ψadj(b
(i)
k , bk+1) (5)

Here, p̂k+1(bk+1) is the ACMI-computed marginal distribution for amino-
acid k + 1 (p̂k+1’s dependence on y dropped for clarity). We sample Cα
k + 1’s location from the product of (a) k + 1’s marginal distribution and
(b) the adjacency potential between Cα k and Cα k + 1.

The optimal sampling function has a corresponding weight update

wi
k+1 ∝ wi

k ×
∫
p(yk+1|bk+1, b

(i)
k ) dbk (6)

This integral, too, is intractable to compute exactly, but can be approximated
using ACMI’s marginals

wi
k+1 ∝ wi

k ×
∫
p̂k+1(bk+1) · ψadj(b

(i)
k , bk+1) dbk (7)

Equations 5 and 7 suggest a sampling approach to the problem of choosing
location of Cα k+1 and reweighting each particle. This sampling approach,
shown in Algorithm 1, is illustrated pictorially in Figure 4.

We sample M potential Cα locations from ψadj(b
(i)
k , bk+1), the

adjacency potential between k and k + 1, which models the allowable
conformations between two adjacent Cα’s. We assign each sample a
weight: the approximate marginal probability p̂k+1 at each of these sampled
locations. We select a sample from this weighted distribution, approximating
Equation 5. Finally, we reweight our particle as the sum of weights of all the
samples we considered. This sum approximates the integral in Equation 7.

This process, in which we consider M potential Cα locations, is repeated
for every particle in the particle filter for each Cα in the protein. For
every particle, we begin by sampling locations for the amino-acid k whose
marginal distribution has the lowest entropy (we use a soft-minimum to
introduce randomness in the order in which amino acids are placed). This
corresponds to the amino acid which ACMI is most sure of the location. The
direction we sample at each iteration (i.e. toward the N- or C-terminus) is
also decided by the entropy of the marginal distributions.

3.2.2 Using sidechain templates to sample sidechains Once our
particle filter has placed Cα’s k−1, k, and k+1 at 3D locations b(i)k−1:k+1,
it is ready to place all the sidechain atoms in amino-acid k. We denote
the position of these sidechain atoms sk . Given the primary amino-acid
sequence around k, we consider all previously observed conformations (i.e.,
those in the PDB) of sidechain k. Thus, sk consists of (a) an index into a
database of known sidechain 3D structures and (b) a rotation.

To further simplify, each sidechain template models the position of every
atom from Cαk−1 to Cαk+1. Then, given three consecutive backbone
positions b(i)k−1:k+1, the orientation of sidechain sk is determined by

aligning the three Cα’s in the sidechain template to b(i)k−1:k+1.
As Algorithm 1 shows, sidechain placement is quite similar to the Cα

placement in the previous section. One key difference is that sidechain
placement cannot take advantage of ACMI’s marginal distribution, as ACMI’s
probability distributions have marginalized away sidechain conformations.
Instead, the probability of a sidechain is calculated on-the-fly using the
correlation coefficient between a potential conformation’s calculated density
and a region around bk in the density map.

Figure 5 illustrates the process of choosing a sidechain conformation for
a single particle i. We consider each of L different sidechain conformations
for amino-acid k. For each sidechain conformation s∗l

k , l ∈ {1, . . . , L}, we
compute the correlation coefficient between the conformation and the map

CCl = cross-correlation(s∗l
k ,EDM[b

(i)
k ])

EDM[bk] denotes a region of density in the neighborhood of bk .
To assign a probability p(EDM[b

(i)
k ]|sk) to each sidechain conformation,

we compute the probability that a cross-correlation value was not generated
by chance. That is, we assume that the distribution of the cross correlation of
two random functions is normally distributed with mean µ and variance σ2.
We learn these parameters by computing correlation coefficients between
randomly sampled locations in the map. Given some cross correlation xc,
we compute the expected probability that we would see score xc or higher
by random chance,

pnull(xc) = P (X ≥ xc;µ, σ
2) = 1− Φ(xc − µ/σ) (8)

Here, Φ(x) is the normal cumulative distribution function. The probability
of a particular sidechain conformation is then

p(EDM[b
(i)
k ]|s∗l

k ) ∝ (1/pnull)− 1 (9)

Since we are drawing sidechain conformations from the distribution of
all solved structures, we assume a uniform prior distribution on sidechain
conformations, so p(s∗l

k |EDM[b
(i)
k ]) ∝ p(EDM[b

(i)
k ]|s∗l

k ).
As illustrated in Figure 5, sidechain sampling uses a similar method to the

previous section’s backbone sampling. We consider extending our particle
by each of theL sidechain conformations {s∗1k , . . . , s∗L

k } sampled from our
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sample M bk+1’s 

from ψ(bk ,bk+1)

.  .
  . Σ

pick weighted sample
from distribution

(b      )p̂ *m
k+1

wk wk+1

update particle weights as 
sum of  sample weights

1 3

4

b (i)
k−1

b (i)
k

(i)

*m

weight samples
by belief pk+1

2

(b      )p̂ *M
k+1k+1

(b      )p̂ *1
k+1k+1

(b      )p̂ *2
k+1k+1

b (i)
k−1

b (i)
k

b (i)
k+1

Fig. 4. An overview of the backbone forward-sampling step. Given positions bk−1 and bk , we sample M positions for bk−1 using the empirically-derived
distribution of Cα–Cα–Cα pseudoangles. Each potential bk+1 is weighted by the belief p̂(b∗m

k+1|y). We choose a single location from this distribution; the
particle weight is multiplied by the sum of these weights in order to approximate Equation 6.

pick weighted sample
from distribution

update particle weights as 
sum of  sidechain probs

3

4

Σ (y|s      )p̂ *ℓ
k+1

wk wk+1
b (i)

k−1

b (i)
k b (i)

k+1

sample L sk     ’s from 

sidechain database 

1 *ℓ

weight samples using 

p(sk   ) = p(EDM[bk   ] | sk    )

2

b (i)
k−1

b (i)
k b (i)

k+1

s (i)
k

*ℓ(i)ˆ

(s      )p̂ *3
k+1

*ℓ

(s      )p̂ *2
k+1

(s      )p̂ *1
k+1

Fig. 5. An overview of the sidechain sampling step. Given positions bk−1:k+1, we consider L sidechain conformations s∗l
k . Each potential conformation is

weighted by the probability of the map given the sidechain conformation, as given in Equation 9. We choose a sidechain from this distribution; the particle
weight is multiplied by the sum of these weights.

sidechain database. After computing the correlation between each sidechain
conformation’s density and the density map around bk , each conformation
is weighted using Equation 9. We choose a single conformation at random
from this weighted distribution, updating each particle’s weight by the sum
of weights of all considered sidechain conformations.

Finally, our model takes into account the partial model xj:k−1 when
placing sidechain sk . If any atom in sidechain sk overlaps a previously
placed atom or any symmetric copy, particle weight is set to zero.

3.3 Crystallographic data
Ten experimentally phased electron-density maps, provided by the Center
for Eukaryotic Structural Genomics (CESG) at UW–Madison, have been
used to test ACMI-PF. The maps were initially phased using AUTOSHARP

(Terwilliger, 2002), with non-crystallographic symmetry averaging and
solvent flattening (in RESOLVE) used to improve the map quality where
possible. The ten maps were selected as the “most difficult” from a larger
dataset of twenty maps provided by CESG. These structures have been
previously solved and deposited to the PDB, enabling a direct comparison
with the final refined model. All ten required a great deal of human effort to
build and refine the final atomic model.

The data are summarized in Table 1, with quality described by
the resolution and phase error. The resolution from the initial phasing
may not have reached the resolution limit of the data set. Initial low-
resolution phasing was computationally extended in three structures (using
an algorithm in RESOLVE). Mean phase error was computed using
CCP4 (Collaborative Computational Project, 1994) by comparing calculated
phases from the deposited model with those in the initially phased dataset.

3.4 Computational Methodology
Models in ACMI-PF are built in three phases: (a) prior distributions are
computed, (b) ACMI infers posterior distributions for each Cα location, and

Table 1. Summary of crystallographic data.

PDB
ID

AAs in
ASU

Molecules
in ASU

Resolution
(Å)

Phase error
(o)a

2NXFb 322 1 1.9 58◦

2Q7Ab 316 2 2.6 49◦

XXXXd 566 2 2.65 54◦

1XRI 430 2 3.3 39◦

1ZTP 753 3 2.5 42◦

1Y0Z 660 2 2.4 (3.7c) 58◦

2A3Q 340 2 2.3 (3.5c) 66◦

2IFU 1220 4 3.5 50◦

2BDU 594 2 2.35 55◦

2AB1 244 2 2.6 (4.0c) 66◦
a averaged over all resolution shells
b different dataset was used to solve the PDB structure
c phasing was extended from lower resolution
d PDB file not yet released

(c) all-atom models are constructed using particle filtering. Where available,
ACMI used the location of selenium atom peaks as a soft constraint on
the positions of methionine residues. Particle filtering was run ten times;
in each run, the single highest-weight model was returned, producing a
total of ten ACMI-PF protein models. Predicted models were refined for 10
iterations using REFMAC5 (Murshudov et al., 1997), with no modification
or added solvent. The first step is the most computationally expensive, but
is efficiently divided across multiple processors. Computation time varied
depending on protein size; the entire process took at most a week of CPU
time on ten processors.

We compare ACMI-PF to four different approaches using the same ten
density maps. To test the utility of the particle-filtering method for building
all-atom models, we use the structure that results from independently placing
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Fig. 6. A comparison of the Rfree of ACMI-NAÏVE and ACMI-PF, as the
number of protein models produced varies. Multiple models are produced by
independent ACMI-PF runs (ACMI-NAÏVE only produces a single model).
Since Rfree in deposited structures is typically 0.20-0.25, we use 0.20 as
the lowest value on the y-axis.

the best matching sidechain on each Cα predicted by ACMI, which we
term ACMI-NAÏVE. The other three approaches are the commonly used
density-map interpretation algorithms ARP/WARP (version 7), TEXTAL

(in PHENIX version 1.1a), and RESOLVE (version 2.10). Refinement for
all algorithms uses the same protocol as ACMI-PF, refining the predicted
models for 10 iterations in REFMAC5 (ARP/WARP, which integrates
refinement and model-building, was not further refined).

To assess the prediction quality of each algorithm, we consider three
different performance metrics: (a) backbone completeness, (b) sidechain
identification, and (c) R factor. The first metric compares the predicted
model to the deposited model, counting the fraction of Cα’s placed within 2
Å of some Cα in the PDB-deposited model. The second measure counts the
fraction of Cα’s both correctly placed within 2 Å and whose sidechain type
matches the PDB-deposited structure. Finally, the R factor is a measure of
deviation between the reflection intensities predicted by the model and those
experimentally measured. A lower R factor indicates a better model. The R
factor is computed using only peptide atoms (i.e., no added water molecules).
The comparison uses the so-called free R factor (Brunger, 1992), which is
based on reflections that were not used in refinement.

4 RESULTS AND DISCUSSION
4.1 ACMI-NAÏVE versus ACMI-PF
We first compare protein models produced by ACMI-PF to those
produced by ACMI-NAÏVE. The key advantage of particle filtering
is the ability to produce multiple protein structures using ensembles
of particles. Since the density map is an average over many
molecules of the protein in the crystal, it is natural to use multiple
conformations to model this data. There is evidence that a single
conformation is insufficient to model protein electron density
(Burling & Brunger, 1994; Levin et al., 2007; Furnham et al., 2006;
DePristo et al, 2004). As comparison, we take ACMI-NAÏVE, which
uses the maximum-marginal trace to produce a single model.

We use ACMI-PF to generate multiple physically feasible models,
by performing ten different ACMI-PF runs of 100 particles each.
Each run sampled amino acids in a different order; amino acids
whose belief had lowest entropy (i.e., those we are most confident
we know) were stochastically preferred. Figure 6 summarizes the
results. The y-axis shows the average (over the ten maps) Rfree

of the final refined model; the x-axis indicates the number of
ACMI-PF runs. This plot shows that a single ACMI-PF model
has an Rfree approximately equal to the Rfree of ACMI-NAÏVE.
Model completeness is also very close between the two (data not
shown). As additional structures are added ACMI-PF’s model,
average Rfree decreases. The plot shows ACMI-NAÏVE’s model
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Fig. 7. A comparison of ACMI-PF to other automatic interpretation methods
in terms of average backbone completeness and sidechain identification.

as a straight line, since there is no mechanism to generate multiple
conformations. We believe a key reason for this result is that particle
filtering occasionally makes mistakes when tracing the main chain,
but it is unlikely for multiple PF runs to repeat the same mistake. The
mistakes average out in the ensemble, producing a lower R factor.

Individual models in ACMI-PF offer additional advantages over
ACMI-NAÏVE. Comparing the ACMI-PF model with lowest Rwork

(the “training set” R factor) to ACMI-NAÏVE’s model shows that
particle filter produces fewer chains on average (28 versus 10) and
lower all-atom RMS error (1.60Å versus 1.72Å). This trend held
in all ten maps in our test set: ACMI-PF’s best model contains
fewer predicted chains and lower RMS error than ACMI-NAÏVE.
Additionally, the structures particle filtering returns are physically
feasible, with no overlapping sidechains or invalid bond lengths.

4.2 Comparison to other algorithms
We further compare the models produced by particle filtering on the
ten maps to those produced by three other methods for automatic
density-map interpretation, including two well-established lower-
resolution algorithms, TEXTAL and RESOLVE, and the atom-
based ARP/WARP (although most of our maps are outside of its
recommended resolution).

Figure 7 compares all four methods in terms of backbone
completeness and sidechain identification, averaged over all ten
structures. To provide a fair comparison, we compute completeness
of a single ACMI-PF structure (of the ten produced). The ACMI-
PF model chosen was that with the lowest refined Rwork. Under
both of these metrics, ACMI-PF locates a greater fraction of the
protein than the other approaches. ACMI-PF performs particularly
well at sidechain identification, correctly identifying close to 80%
of sidechains over these ten poor-quality maps. The least accurate
model that ACMI-PF generated (for 2AB1) had 62% backbone
completeness and 55% sidechain identification. In contrast, the three
comparison methods all return at least five structures with less than
40% backbone completeness and at least eight structures with less
than 20% sidechain identification.

Scatterplots in Figure 8 compare the Rfree of ACMI-PF’s
complete (10-structure) model to each of the three alternative
approaches, for each density map. Any point below the diagonal
corresponds to a map for which ACMI-PF’s solution has a lower
(i.e., better)Rfree. These plots show that for all but one map ACMI-
PF’s solution has the lowest R factor. The singular exception for
which ARP/WARP has a lower R factor is 2NXF, a high (1.9Å)
resolution but poorly phased density map in which ARP/WARP
automatically traces 90%, while ACMI-PF’s best model correctly
predicts only 74%. Our results illustrate both the limitations and the
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Fig. 8. A comparison of the free R factor of ACMI-PF’s interpretation for each of the ten maps versus (a) ARP/WARP, (b) TEXTAL, and (c) RESOLVE. The
scatterplots show each interpreted map as a point, where the x-axis measures the Rfree of ACMI-PF and the y-axis the alternative approach.

advantages of ACMI-PF: it is consistently superior at interpretation
of poorly phased, lower resolution maps, while an iterative phase-
improvement algorithm like ARP/WARP may be better suited for a
poorly phased but higher-resolution data.

5 CONCLUSION
We develop ACMI-PF, an algorithm that uses particle filtering to
produce a set of all-atom protein models for a given density map.
Particle filtering considers growing stepwise an ensemble of all-
atom protein models. The method builds on our previous work,
where we infer a probability distribution of each amino acid’s
Cα location. ACMI-PF addresses shortcomings of our previous
work, producing a set of physically feasible protein structures that
best explain the density map. Our results indicate that ACMI-PF
generates more accurate and more complete models than other state-
of-the-art automated interpretation methods for poor-resolution
density map data. ACMI-PF produces accurate interpretations, on
average finding and identifying 80% of the protein structure in
poorly phased 2.5 to 3.5 Å resolution maps.

Using ACMI-PF, an ensemble of conformations may be easily
generated using multiple runs of particle filtering. We show that
sets of multiple structures generated from multiple particle filtering
runs better fit the density map than a single structure. This is
consistent with recent observations of the inadequacy of the single-
model paradigm for modeling flexible protein molecules (Burling
& Brunger, 1994; Furnham et al., 2006; DePristo et al, 2004) and
with the encouraging results of the ensemble refinement approach
(Levin et al., 2007). The ensemble description may also provide
valuable information about protein conformational dynamics. As
well, multiple conformations may be valuable for application of
ACMI-PF in an iterative approach, where computed phases from
an ACMI-PF model are used build an updated density map, which
is fed back into the ACMI pipeline.

ACMI-PF’s model-based approach is very flexible, and allows
integration of multiple sources of “fuzzy” information, such as
locations of selenium peaks. In the future, it may be productive
to integrate other sources of information in our model. A more
complicated reweighting function based on physical or statistical
energy could better overcome ambiguities of unclear regions in the
density map. The inclusion of these and other sources of information
is possible, so long as they can be expressed in the probabilistic
framework proposed here. This could further extend the resolution
in which automated interpretation of density maps is possible.
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