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ABSTRACT

In the process of automatically annotating songs with de-
scriptive labels, multiple types of input information can be
used. These include keyword appearances in web docu-
ments, acoustic features of the song’s audio content, and
similarity with other tagged songs. Given these individ-
ual data sources, we explore the question of how to aggre-
gate them. We find that fixed-combination approaches like
sum and max perform well but that trained linear regres-
sion models work better. Retrieval performance improves
with more data sources. On the other hand, for large num-
bers of training songs, Bayesian hierarchical models that
aim to share information across individual tag regressions
offer no advantage.

1. INTRODUCTION

We are interested in developing a semantic music discov-
ery engine in which users enter text queries and receive a
ranked list of relevant songs. This task requires a semantic
music index, i.e., a mapping between songs and associated
tags. A tag, such as “afro-cuban roots,” “heavy metal,” or
“steel-string guitar,” is a short text token which describes
some meaningful aspect of the music (e.g., genre, instru-
mentation, emotion, geographical origins). In this paper,
our goal will be to compute a real-valued score ŷst that
expresses how strongly tag t applies to song s.

There are a number of ways to collect semantic annota-
tions of music. [1] compare five such approaches: surveys,
social tagging, games, web documents, and audio content.
Each of these data sources offers a different perspective,
and each has its own strengths and weaknesses (e.g., scala-
bility, popularity bias, accuracy), so we may wish to collect
information from several of them. The question then be-
comes how to combine that information into a single score
for use in our semantic index.
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In Section 2, we describe three sources of music in-
formation that we have collected: text mining web docu-
ments, content-based audio analysis, and collaborative fil-
tering. Section 3 describes various approaches for combin-
ing these sources, including simple fixed rules, as well as
a trained regression model in which combination weights
depend on the quality and sparsity of the input data. We
explore both ordinary linear and logistic regression, as
well as Bayesian hierarchical models that aim to share
information across tags. Section 4 describes our exper-
imental setup, which includes a ground-truth corpus of
10,870 songs for two vocabularies (71 Genre tags and 151
Acoustic tags) collected from Pandora’s Music Genome
Project. 1 Section 6 concludes.

2. MUSIC INFORMATION SOURCES

We collect semantic-annotation information from three
sources: web documents (WD), content-based audio anal-
ysis (CB), and collaborative filtering (CF). For each song
s and tag t, we use these sources to generate scores—
denoted xWD

st , xCB
st , and xCF

st , respectively—indicating how
well t describes s.

2.1 Web Documents

Tags that appropriately describe a song will tend to appear
in association with the song’s name in natural-language
text documents. We exploit this fact by downloading from
the web pages that describe the song and counting how of-
ten the proposed tag appears within them.

Given a song s, we generate a database Ds of docu-
ments by querying Google for “song name” “artist name”
in lower-case (e.g., “enjoy the silence” “depeche mode”).
We download all hits in the top 10 and clean the HTML
files into raw text. This was done for a total of 9,359 songs.
Then, for each tag t, we compute

xWD
st =

∑
d∈Ds

ntd

Ntd
,

where ntd is a measure that roughly expresses how many
times t actually appeared in document d, and Ntd is the
number of times t could have appeared in d. Ntd is just

1 See http://www.pandora.com/mgp.shtml



|d| / |t|, the number of words in d divided by the number
of words in t. ntd is a bit more complicated. For long tags,
such as “call and answer vocal harmony (antiphony),” po-
sitional searches for the entire phrase would not work well.
On the other hand, searching for the appearance of any of
the words in t would yield too many hits. We compromise
by computing ntd as the minimum number of hits for any
word, taken over all words in t. In the case when the words
in t appear in d only in the correct order, ntd will in fact be
equal to the number of occurrences of the full phrase t.

2.2 Content-Based Audio Analysis

A second potential source of semantic information about a
song is the audio content itself. For this purpose we use
the supervised multiclass labeling (SML) model recently
proposed by [2].

The audio track of a song is represented as a bag of
feature vectors X = {x1, . . . ,xT }, where each xi is a fea-
ture vector that represents a short-time segment of audio,
and T depends on the length of the song. We use the ex-
pectation maximization (EM) algorithm to learn a song-
specific Gaussian mixture model (GMM) distribution over
each X . Then, for each tag in our vocabulary, we learn a
tag-specific GMM using the Mixture Hierarchies EM algo-
rithm [3]. This algorithm combines the set of song-specific
GMMs for all the songs that have been associated with the
tag. Given a novel song s, we compute the likelihood that
its bag of feature vectors Xs would have been generated by
each of the tag GMMs. Normalizing these likelihoods us-
ing the technique described in [2] yields our set of scores
xCB

st , which can be interpreted as the parameters of a multi-
nomial distribution over the vocabulary of tags.

We use the popular Mel frequency cepstral coefficients
(MFCCs) as our audio feature representation since it was
incorporated into all of the top performing autotagging sys-
tems in the 2008 MIREX tag classification task [2, 4–6].
MFCCs are loosely associated with the musical notion
of timbre (“color”) of the music because they are a low-
dimensional representation of the frequency spectrum of a
a short-time audio sample. For each monaural song in the
data set, sampled at 22,050 Hz, we compute the first 13
MFCCs for each half-overlapping short-time (∼23 msec)
window from 6 five-second clips spaced at uniform inter-
vals over the length of the song. Over the time series of
audio segments, we calculate the first and second instan-
taneous derivatives (referred to as deltas) for each MFCC.
This results in about 5,000 39-dimensional MFCC+delta
feature vectors per 30 seconds of audio content. We sum-
marize an entire song by modeling the distribution of
its MFCC+delta features with a 4-component GMM. We
model each tag with an 8-component GMM.

2.3 Collaborative Filtering

One additional source of semantic information is user
playlists: If two songs appear together in a large number
of listener collections, one possible reason is that the songs
share certain attributes (say, “punk influences”) that the lis-
teners enjoy. This suggests the idea of tag propagation:

Find songs that tend to co-occur in playlists, and transfer
tags from one of them to the other. A more robust approach
is to find the collection of k songs (k = 32 here) that have
the strongest co-occurence score with a given song s. For
each tag t, we take the association xCF

st of s with t to be the
fraction of those 32 songs to which t applies. We set this
number to 0 if the fraction is below a threshold of 0.3. The
reasons for these choices, as well as further details on the
entire data-collection process and choice of tag sets, appear
in [7].

Our data consist of 400,000 user music libraries from
last.fm, where a library is taken to be the set of items that
a user listens to at least 1% of the time. It turns out that data
at the song level is too sparse to generate meaningful co-
occurence statistics, so we instead work at the artist level.
We say that a tag applies to an artist if the tag applies to
any of that artist’s songs. At the end of the propagation
process, we transfer an artist’s score for a tag to each of its
songs. We find the 32 closest artists using the following
similarity score. Between artists i and j, we take

sim(i, j) =
p(i, j)√
p(i)p(j)

,

where p(i, j) is the fraction of all artist co-occurrences rep-
resented by artists i and j, and p(i) is the fraction of all
co-occurrences containing artist i.

3. COMBINING METHODS

Given the data sources described in Section 2, how can
we aggregate them? This general question has been well
studied and is known variously as combining expert judg-
ments (e.g., [8, 9]), multi-sensor data fusion (e.g., [10]),
information fusion (e.g., [11]), or combining classifiers
(e.g., [12, 13]). Rather than reviewing the entire body of
literature on the subject, we focus on two of the most basic
approaches: Fixed-combination rules and trained combin-
ers, specifically regression.

3.1 Fixed Combiners

Fixed combining rules take the output score ŷst to be a sim-
ple function of the input scores: e.g., max, min, median,
sum, or product [14, sec. 3]. Usually the input scores xi

st,
with i ∈ {WD,CB,CF}, are calibrated so that they corre-
spond to confidences or probabilities pi

st that t applies to s
given the source. This can be done, for instance, by stan-
dardizing the input scores to have mean 0 and variance 1
and then taking

pi
st =

1
1 + exp

(
−αxi

st

)
for some α [14, sec. 4.1]. We use α = 1 in this paper.

A disadvantage of this technique, however, is that each
source is treated on equal footing, when in fact, one of our
sources may be far more trustworthy or better informed
[14, sec. 1]. One method that overcomes this limitation is
Bayesian Model Averaging (BMA) (e.g., [15]), which as-
sumes that one of the data sources is the “correct” source



and takes the final probability to be a weighted combina-
tion of the input probabilities:

pall sources
st =

∑
i∈{WD,CB,CF}

pi
stpi,

where pi is the probability that source i is correct. As [16,
sec. 1] point out, this assumption is often unrealistic, as
the truth about whether a tag applies to a song needn’t be
captured by exactly one of our data sources. Still, the idea
of taking our final score ŷst to be a weighted combination
of the input scores—

ŷst =
∑

i∈{WD,CB,CF}

βi
tx

i
st (1)

for some weights βi
t—does seem like a natural way to ac-

count for the differential predictive value of different in-
puts. The question is how to determine the weights.

3.2 Trained Combiners

If we have training data for a subset of songs, 2 the obvious
answer is to use supervised learning. This is the trained
combiners approach advocated in [14]. Indeed, (1) has the
form of a linear-regression model, and we can determine
the weights of the sources just by treating them as input
features and computing their regression coefficients.

We try both linear and logistic regression, predicting the
ground truth yst ∈ {0, 1} by the individual scores xi

st, as
well as an intercept and possibly other features of inter-
est (see Section 3.4). We take our predicted values ŷst to
be real-valued so that we can more finely rank-order songs
than with 0/1 labels. Regression is a convenient combi-
nation approach because it potentially allows us to use a
number of standard statistical tools: p-values for the sig-
nificance of regression coefficients, prediction intervals for
our output scores, model selection based on residual sum
of squares, and many more advanced techniques.

3.3 Hierarchical Regression Models

One such technique is borrowing of information across
tags. Each tag has its own regression model, but we might
suspect that these models share significant structure: For
instance, if collaborative filtering tends to be a highly pre-
dictive source, we would expect its coefficient to be con-
sistently large. And the linear combination of sources that
best predicts the tag “traditional country” is probably sim-
ilar to the one that best predicts “contemporary country.”

One way to capture this intuition is with a Bayesian hi-
erarchical linear model (e.g., [17]). We’ll illustrate this
concept in the case of a single regression coefficient βt for
a single data source xst without an intercept, but similar

2 Another possible scenario is that, rather than having ground-truth la-
bels for a subset of our songs, we have data that applies to all of our songs
but is weakly labeled, i.e., not every song that applies for a given tag is
labeled as such. If our input data sources are less sparse, we can use them
to “fill in zeros” in the ground truth while preserving the labels that the
ground truth had already.

equations apply in the multivariate setting. Independent
regression across the T tags assumes

yst = βtxst + εst, εst
i.i.d.∼ N (0, σ2

t ), t = 1, . . . , T (2)

for some variances σ2
t , with no relationship among the βt

values. We call this the Independent Linear model. The
Independent Logistic model is the same, except that yst

is replaced by the log-odds ln
(

pst

1−pst

)
, where pst is the

probability that yst = 1.
In a hierarchical model, we assume in addition to (2)

that the βt’s share a common structure:

βt = β + vt, vt
i.i.d.∼ N (0, σ2), t = 1, . . . , T. (3)

For instance, if we had three tags with independent regres-
sion coefficients of 0.1, 0.2, and 0.3, it might be reasonable
to suppose that β ≈ 0.2 with σ ≈ 0.1. We can further
assume a prior over β and perform Bayesian inference to
estimate the parameters. The multivariate version of this
model we call Hierarchical Linear, and the correspond-
ing version in which yst is replaced by the log-odds that
yst = 1 we call Hierarchical Logistic.

We might also assume that vt in (3), rather than be-
ing normally distributed, is drawn from a mixture of nor-
mal distributions. For instance, perhaps the web-document
source is much better at predicting genre labels than acous-
tic ones, so that its βt values for genre tags cluster around
0.2, say, while its βt values for acoustic tags cluster around
0.05. In that case, βt could be modeled by taking β = 0.05,
with vt having peaks at 0 and 0.15. We call this model Mix-
ture Lineark, where k is the number of centers. 3

3.4 Regression Models

Equation (1) suggests the basic regression model to use,
although in practice we include an intercept, which we find
always to be highly statistically significant. We can also
regress on just one or two of the main sources at a time.

A nice aspect of using regression is that we can in-
clude extra features in our model (assuming we expect
they’ll contribute useful information rather than meaning-
less noise that will lead us to overfit). In particular, we
include scrobble counts from last.fm as a measure of the
popularity of the artist who wrote the given song. If we
suspected that more popular songs had more nonzero yst

values in our ground-truth, we would expect this popular-
ity term to have a high positive regression coefficient. In-
cluding the term could be seen as a way of controlling for
popularity bias if we omit the popularity feature when we
predict ŷst for novel songs. We can also include terms for
the interaction of data sources with popularity. A positive
interaction coefficient would indicate that the data source
gives a more confident prediction that a tag applies to a
song when the song’s artist is popular.

3 See Chapters 3 and 5 of [18] for details on each of these three hierar-
chical models in a more general setting.



4. EXPERIMENTAL SETUP

4.1 Data Set

Our data set consists of 10,870 songs representing 19 top-
level genres (e.g., rock, classical, electronic) and 180 sub-
genres (e.g., grunge, romantic period opera, trance). We
have approximately 60 songs per subgenre. Each song is
associated with one or more genres and one or more sub-
genres. For each song, we also attempt to collect between
2 and 10 acoustic tags from Pandora’s Music Genome
Project vocabulary. This vocabulary consists of over 1,000
unique tags like “dominant bass riff,” “gravelly male vo-
calist,” and “acoustic sonority.” These acoustic tags can
be thought to be objective in that two trained experts can
annotate a song using the same tags with high probabil-
ity [19].

4.2 Cross-Validation Setup

We evaluate the retrieval performance of our combined
scores using five-fold cross-validation on the Pandora data
set. Ordinarily, this would involve training our regression
model on 4/5 of the data and testing on the remaining 1/5.
However, we need to be careful here, because our content-
based data source also trains on the Pandora data set. The
danger is that the content-based system may overfit the
training data, and because our regression model would be
using the same training data, the model might overweight
the content-based source. [14, sec. 5] notes this problem
and suggests that it be addressed by dividing the training
set into two parts, which we do as follows.

We divide the songs into five partitions, each with
roughly 2,000 songs. We apply an artist filter to the parti-
tions, with all of the songs by an artist appearing in a single
fold, to avoid overfitting our model to the particular artists
that appear in our training set. On three of the partitions
we train the content-based system, using it to then obtain
predictions for the songs in the remaining two. We use
one of those partitions (roughly 2,000 songs) to train our
regression model, which then makes its predictions on the
final partition. We then cycle this process five times. The
reason for the uneven split between the two training sets
is that the content-based system needs to learn many more
parameters than our regression model, which typically has
at most five coefficients.

4.3 Tag Pruning

Some tags are labeled with too few songs to be useful for
training when we divide the songs into five partitions, so
we prune them. In particular, the content-based training
considers only tags that have at least 20 positive instances
in the ground truth over each possible set of three parti-
tions on which to train. In addition, our regression model
requires that each single partition have at least one positive
ground-truth song (since it would be trivial to train a model
when the yst’s are all 0) and at least one positive song in
each of the three main data sources. After pruning we are
left with 71 Genre tags and 151 Acoustic tags.

4.4 Implementation Details

Regression works best when the features are roughly nor-
mally distributed, so we transform some of the input scores
for this purpose. For popularity counts, which range any-
where from 1 to over 15 million, we apply a log transfor-
mation. For the web-document source, which is based on
count data, we apply a square-root transformation [20, p.
84]. We then standardize each data source by subtracting
the mean and dividing by the standard deviation for a given
tag. The xi

st’s referred to in Section 3.1 are these standard-
ized values.

For a small number of tags, βi
t was estimated as neg-

ative for one or two of the input data sources. Because
we believe that our main three data sources, while poten-
tially unhelpful, should not be anti-predictive of the ground
truth, we eliminate negative coefficients by setting them
to 0 when they occur. (Making this adjustment results in
a small but statistically significant improvement in mean
average precision and area under the ROC curve for both
Genre and Acoustic tags.) We do allow popularity to have
a negative coefficient, and we remove this restriction en-
tirely when considering models with interaction terms.

4.5 Regression Types

We implement Independent Linear and Independent Lo-
gistic regression using the basic lm and glm func-
tions of the R language. For the hierarchical re-
gressions, we use the bayesm package [21], specifi-
cally the rhierLinearModel, rhierBinLogit, and
rhierLinearMixture functions for Hierarchical Lin-
ear, Hierarchical Logistic, and Mixture Lineark, respec-
tively, with all optional parameters set to their default val-
ues. These methods use Markov chain Monte Carlo to
sample the entire posterior distribution for the βi

t’s given
the data, but we simply take our βi

t estimate to be the aver-
age of these draws. Performance is good with as few as a
few hundred samples, but we find that area under the ROC
curve does not level off completely until 5,000 to 10,000
draws. For the results in this paper, we sample 15,000
draws, which takes on the order of 30 minutes with roughly
100 tags and 2,000 songs. A parameter sweep of the num-
ber k of means in the Gaussian-mixture prior showed no
appreciable differences over the range 2 to 50, so we use
k = 2 as the default.

5. RESULTS AND DISCUSSION

We assess performance using the four standard
information-retrieval metrics listed in Table 1 (see [22, sec.
8.4] for explanation of each). We have also made avail-
able 4 a list of the top 5 predicted songs for each tag for
purposes of qualitative evaluation.

4 See http://www.sccs.swarthmore.edu/users/09/
btomasi1/combiner/



Table 1. Area under the ROC curve, mean average precision, R-precision, and 10-precision for various settings described further in
the text. Rows are ordered by average AUC for Genre tags. Means and standard errors are taken over the tags, applied to the averages
of five-fold cross-validation. (To compute standard errors with respect to each individual CV fold, divide the reported standard errors
by a further

√
5.) The data-source abbreviations are web documents (WD), collaborative filtering (CF), content-based analysis (CB),

popularity (P), all three main sources in the model (All3), and interactions with each of the three main sources (I).
Regression Model

71 Genre Tags 151 Acoustic Tags

AUC MAP R-Prec 10-Prec AUC MAP R-Prec 10-Prec

Random 0.502±0.003 0.09±0.01 0.08±0.01 0.08±0.02 0.508±0.003 0.032±0.003 0.030±0.003 0.03±0.00
WD 0.666±0.010 0.25±0.02 0.29±0.02 0.47±0.03 0.616±0.006 0.135±0.007 0.181±0.008 0.29±0.02
CF 0.732±0.010 0.45±0.02 0.45±0.02 0.72±0.04 0.641±0.008 0.154±0.010 0.213±0.011 0.25±0.02
CB 0.781±0.014 0.23±0.02 0.25±0.02 0.38±0.03 0.836±0.008 0.141±0.007 0.161±0.008 0.19±0.01
WD&CF 0.789±0.010 0.50±0.02 0.50±0.02 0.74±0.04 0.724±0.007 0.231±0.010 0.280±0.011 0.40±0.02
CB&WD 0.819±0.010 0.32±0.02 0.34±0.02 0.53±0.03 0.870±0.006 0.220±0.009 0.246±0.009 0.36±0.02
CB&CF 0.853±0.009 0.49±0.02 0.48±0.02 0.73±0.04 0.861±0.007 0.213±0.010 0.244±0.010 0.29±0.01
All3&P&I 0.856±0.007 0.52±0.02 0.50±0.02 0.74±0.04 0.860±0.006 0.262±0.010 0.288±0.010 0.40±0.02
All3 0.871±0.007 0.52±0.02 0.50±0.02 0.74±0.04 0.888±0.006 0.276±0.010 0.298±0.010 0.42±0.02
All3&P 0.876±0.007 0.52±0.02 0.51±0.02 0.74±0.04 0.887±0.006 0.277±0.010 0.299±0.010 0.42±0.02

Combination Method

71 Genre Tags 151 Acoustic Tags

AUC MAP R-Prec 10-Prec AUC MAP R-Prec 10-Prec

Min 0.658±0.015 0.27±0.02 0.27±0.02 0.60±0.04 0.654±0.009 0.121±0.006 0.161±0.008 0.26±0.01
Product 0.826±0.009 0.42±0.03 0.41±0.02 0.67±0.04 0.814±0.006 0.197±0.008 0.232±0.009 0.32±0.01
Median 0.826±0.009 0.43±0.02 0.43±0.02 0.68±0.04 0.820±0.006 0.219±0.009 0.261±0.009 0.35±0.02
Sum 0.851±0.007 0.44±0.03 0.44±0.02 0.69±0.04 0.847±0.006 0.220±0.009 0.252±0.009 0.34±0.01
Max 0.856±0.007 0.46±0.02 0.48±0.02 0.59±0.03 0.859±0.006 0.239±0.009 0.274±0.009 0.34±0.01
Ind Log 0.866±0.006 0.51±0.03 0.50±0.02 0.72±0.04 0.875±0.005 0.266±0.010 0.293±0.010 0.40±0.02
Hier Log 0.872±0.006 0.51±0.03 0.50±0.02 0.73±0.04 0.883±0.006 0.272±0.010 0.296±0.010 0.40±0.02
Hier Mix 0.876±0.007 0.52±0.02 0.51±0.02 0.74±0.04 0.887±0.006 0.277±0.010 0.299±0.010 0.42±0.02
Hier Lin 0.876±0.007 0.52±0.02 0.51±0.02 0.74±0.04 0.887±0.006 0.277±0.010 0.299±0.010 0.42±0.02
Ind Lin 0.876±0.007 0.52±0.02 0.51±0.02 0.74±0.04 0.887±0.006 0.277±0.010 0.299±0.010 0.42±0.02

5.1 Regression Models

The top half of Table 1 reports the performance of the In-
dependent Linear model on subsets of the data sources, as
well as models that include popularity information. The
Random method is a regression model in which all sources
have coefficients of 0, so that the final ranking of songs
is the same as the (randomized) order in which they were
initially seen. Each source alone clearly performs better
than random, and each addition of a new source results in
a statistically significant improvement in AUC. 5 This is
consistent with the fact that the data sources are relatively
uncorrelated, having correlation coefficients typically less
than 0.3 and often less than 0.1, depending on the tag.

According to the AUC measure, CB is the individually
most predictive source, while according to precision, CF
is. We suspect this reflects the fact that CB’s input repre-
sentation is dense, providing nonzero scores for 91.2% of
songs for each tag, while CF’s input contains mostly ze-
ros, with scores for only an average across tags of 2.4% of
songs. (WD falls in the middle, with nonzero scores for
an across-tag average of 13.7% of songs.) When CF has a

5 This is usually apparent from inspection of standard errors, but we
verify it by checking that p-values are less than 0.05 for paired t-tests on
the per-tag AUC values. In fact, the only pairs between which this fails
to hold are (1) CB and WD&CF for Genre tags, (2) All3 and All3&P
for Acoustic tags, and (3) CB&CF and All3&P&I for both tag types. If
we apply a conservative Bonferroni correction for the 10·9

2
pairs of tests,

a few more pairs become not significant, including the transition from
CB&CF to All3 for Genre tags.

nonzero value, it really means something, so that CF’s top
results are very precise. Toward the later end of the ranked
results list, however, CF is essentially random, while CB
still provides useful information.

It is interesting to observe that CB’s advantage over CF
in terms of AUC is larger in the case of acoustic tags than
genre tags, perhaps because acoustic tags are inherently
more predictable by audio content alone.

Popularity data was not especially helpful. While its
addition to the three main sources did result in a statis-
tically significant AUC improvement for Genre tags (p-
value 0.007), it did not for Acoustic tags (p-value 0.4), and
the magnitude of difference was relatively small. In some
sense, this is a welcome result, since it suggests that the
Pandora labels are not biased very much by whether an
artist is well-known. The interaction model contained too
many features and tended to overfit, which is unsurprising
given the modest usefulness of the main popularity term.

5.2 Coefficient Magnitudes

Our default regression model was Independent Linear with
the three main data sources, popularity, and an intercept.
Averaging the βi

t’s over all of the tags t gives the following
prediction equation for Genre tags (the one for Acoustic
tags is similar):

ŷst = 0.08 + 0.02xWD
st + 0.02xCB

st + 0.09xCF
st + 0.02xpop

s .



Because the xi
st’s represent the transformed and standard-

ized input values (see Section 4.4), the standard error for
each βi

st is roughly the same for a given tag, 6 so that the
t-statistic of each coefficient is roughly proportional to the
coefficient’s magnitude. It’s worth noting, though, that sta-
tistical significance of a coefficient as different from zero
is not identical with usefulness as a data source. Indeed,
we saw in Section 5.1 that CB was individually more pre-
dictive than CF, at least as measured by AUC, while CB’s
coefficient is 0.02 instead of 0.09. The reason may again
be that CB provides a denser input representation than CF;
CF can afford to have a large βCF

st because in the rare cases
when its values are nonzero, they’re strongly informative.

5.3 Regression Types

The bottom half of Table 1 shows various combination
techniques. The regression approaches use the model
All3&P, while the fixed-combination approaches use just
the three main sources. All trained regression models out-
perform all fixed-combining methods. 7 This result con-
trasts with the finding by [11] that the simple sum rule out-
performed supervised linear-discriminant analysis (similar
to logistic regression) and decision trees. Still, Sum and
especially Max do not fare badly and would not be unrea-
sonable choices for a simple combining system. That Max
is close to Independent Logistic regression is perhaps un-
surprising, because the fixed-combining methods apply the
same sigmoid transformation to the input data that logistic
regression uses.

While Hierarchical Logistic regression did slightly out-
perform Independent Logistic, the hierarchical and mix-
ture models showed no apparent effect for linear regres-
sion. We suspect this is because the number of observa-
tions (songs) is so large (over 2,100 on average) that the
Bayesian prior terms in those models wash out. To confirm
this, we tried artificially restricting ourselves to 250 songs,
and in that case, the hierarchical methods did slightly out-
perform their independent counterparts.

6. CONCLUSIONS

We have shown that combining different sources of
song-tag annotation information improves retrieval perfor-
mance. Fixed-combining methods like Sum and Max do
a fine job for simple systems, but retrieval improves when
we use a trained combining method like linear or logistic
regression. In settings where large numbers of songs are
available, basic Independent Linear regression on each tag
separately gives results just as good as more sophisticated
hierarchical models, while allowing for easier implemen-
tation, faster computation, and greater parallelizability.

6 This is only “roughly” because of small inter-feature correlations.
7 Paired t-tests on the AUC values for individual tags give p-values

less than 0.05 for all pairs except between (1) Product and Median and
(2) Sum and Max for Genre tags, and (3) all three of Hier Mix, Hier Lin,
and Ind Lin for both tag types. For Genre tags, five more pairs fail to
reject the null hypothesis if we apply a Bonferroni correction on the 10·9

2
pairs of tests, including Sum vs. Independent Logistic (p-value 0.01).
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