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Abstract

I propose to design a realistic physical sim-
ulator for robots in Python which can easily
use and manipulate automatically generated
as well as designed robot morphologies. Fol-
lowing the completion of this simulator I pro-
pose to evaluate the relative strength of co-
evolutionary methods to conventional evolu-
tion in robot bodies using a genetic process
to evolve creatures in simulation to perform
a simple competitive task. I will allow the
physical structures of one population of robots
to evolve along with their control mechanisms
while a second population remains in a fixed,
human-designed body, and the relative suc-
cesses of these two populations will be com-
pared. The present paper describes my long-
term goals and gives the broad implementa-
tion details of the proposed simulator.

1 Motivation

In most robotics research, emphasis lies on
improving the “brain” or control procedures
in a fixed physical form. In evolutionary
robotics, control is generally “evolved” (fre-
quently in simulation) through multiple gen-
erations by evaluating individual fitness in a
large, non-uniform population and applying
selection, crossover, and mutation to the pop-
ulation until successful brains are developed.
For the most part, this process occurs in a sin-
gle human-engineered robot body which has
proven itself reasonably durable and success-
ful both in and out of simulation, this often

being a model of a commercially available re-
search robot.

In the past fifteen years, however, another
trend has been gaining popularity: that of
coevolution, or holistic evolution1, whereby a
robot’s morphology, as well as its control pa-
rameters, is allowed to vary and be subject to
selection pressures.

Several theories have been advanced to ex-
plain why holistic evolution is preferable and
results in more successful robots. Three ma-
jor theoretical lines of argument have been
advanced. The first is a simple argument
from biological observation: brains and bod-
ies evolved together in nature resulting in
carefully tuned creatures with brains specif-
ically designed to control the bodies they are
in, rather than general purpose brains that
can just as easily be used to control com-
pletely different bodies. The second, related
argument takes a developmental perspective:
holistic evolution avoids potentially constrain-
ing human bias and, proceeding by a large
number of small and gradual modifications to
both brain and body, allows a tighter coupling
of brain and body to emerge.[7] The third is
a theoretical mathematical argument which
will be discussed later. However—somewhat
surprisingly—no direct, side by side compari-
son has ever been done to confirm that holistic
evolution is, in fact, a better approach.

For this reason, I propose to compare holis-

1The accepted term in the literature is the former,
“coevolution”; however, following [9], I prefer the term
“holistic evolution” as more descriptive and less am-
biguous.
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tic evolution to the conventional evolution of
control parameters in fixed morphologies2. I
will evolve two populations of robots in simu-
lation using a competitive selection method to
maximize evolutionary pressures: one popula-
tion will contain robots with varying, initially
random morphologies, and will be evolved
holistically; the other population will have
only its control structures evolved within a
fixed architecture modelled on a real, commer-
cial research robot such as an ActivRobots Pi-
oneer (www.activrobots.com) which is gen-
erally accepted to have good design and to
have the ability to perform well in a wide va-
riety of tasks.

By the nature of the competitive, variable
fitness function, which depends crucially on
the other members of the population, there
is no obvious, objective way to compare the
relative success of two populations of robots.
As a substitute, at periodic intervals through-
out the evolutionary process I will take the
best-performing members of each population
and compete them against each other to de-
termine which population has evolved “more
successfully.” As my sympathies do lie with
the proponents of holistic evolution, I expect
that, eventually, the holistically evolved pop-
ulation will outperform the other, perhaps by
quite a consistent and wide margin, though I
expect that the opposite will be true during
the early stages of the evolutionary process.

In order to perform this experiment I will
need a simulator which allows robot mor-
phologies to be specified easily and modified
automatically without additional code com-
pilation or intervention from the user. Un-
fortunately, no such simulators are currently
available. Therefore my first step must be to
develop a simulator which will allow me to run
this experiment.

In the present paper I describe the details
of both my proposed simulator, the Robotic

2For lack of a better term, I will refer to this as
“conventional” evolution.

Artificial Brain/Body-Intertwined Simulation
Toolkit and Evolution Workshop, or Rabbit-
stew, and of the experiment that I will per-
form on the simulator. In the first section
I discuss related work in the field of holis-
tic evolutionary robotics, and I describe the
present state of commercially and freely avail-
able robot simulators; in the second section I
give the proposed implementation details of
both the physical simulator itself and the sep-
arate three-dimensional graphical display pro-
gram; and in the final section I describe the
experiment which motivates the design of the
simulator.

2 Related Work

2.1 Holistic Evolution Research

Salmon[9] offers a more complete overview of
work done on holistic evolution and summa-
rizes some of the empirical and theoretical ar-
guments in favor of holistic evolution.

2.1.1 Proof of Concept

Karl Sims[10, 11] successfully demonstrated
holistic evolution, essentially as a proof of con-
cept; starting with completely random mor-
phologies, spreading control structures across
the robots’ bodies, and giving the robots a
competitive task to complete, he produced a
number of interesting robots with widely vary-
ing morphologies, many of whose strategies
in the competition were essentially quite sim-
ple and depended crucially on their particular
physical structures in ways which convention-
ally evolved robots could not have developed
in a fixed form.

Sims evolved five groups of creatures, each
with a different fitness metric: one group was
evolved to quickly take control of a block in
the center of an arena and prevent an op-
ponent creature from doing the same; one
group was evolved to locomote by swimming
in an underwater environment; one group was
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evolved to walk on land, another to hop in
a low-gravity world, and another to quickly
follow a point of light. However, he did not
compare this in any way with non-holistically
evolved robots as his motivation was primar-
ily to create thought-provoking computer art
and to demonstrate the feasibility of holistic
evolution rather than its advantages.

Thomas Ray[8], in a follow up to Sims’
work, implemented a similar procedure, re-
placing the automated fitness selection func-
tions of the original study with ratings pro-
vided by human observers to select for in-
creased aesthetic and emotional appeal of the
resulting reatures.

Somewhat troublingly, Ray estimates that
up to 90% of over 300 “interesting genomes”
that resulted, many of which were able to
swim and crawl successfully, were found by
the random generation which initializes a pop-
ulation. However, he does say that evolu-
tion improved his creatures, and it is unclear
whether the 90% he cites were found purely

by random initialization or whether some they
were enhanced by at least some evolution.

Furthermore, Ray was selecting for sub-
jective aesthetic qualities more than for sta-
bility and success at a well-defined task in
a physical environment; indeed, one of the
creatures he selected for reproduction had an
unfortunate tendency to explode under the
strain of its own internal forces. It is likely
that, with more physically challenging selec-
tion pressures, the importance of evolutionary
processes would increase while the likelihood
of finding successful individuals purely by ran-
dom search would decrease significantly.

Pablo Funes and Jordan Pollack[6] provide
independent supporting evidence for the po-
tential of physical structure evolution in ad-
dition to control evolution. To demonstrate
that physical structure can effectively be gen-
erated by a genetic process, they evolved
passive objects such as bridges, cantilevers,
and crane arms in simulation using simulated

Lego3 blocks. Perhaps confirming the de-
velopmental argument that undirected search
techniques such as simulated evolution re-
move restrictive human biases, their resulting
structures were often unusual and counterin-
tuitive, but perfectly functional even when re-
produced with physical Lego blocks.

2.1.2 Advantages of Holistic Evolution

Providing some evidence of the value of holis-
tic evolution, Balakrishnan and Honavar[1]
performed a semiholistic evolution in a very
limited, idealized environment, where fitness
measures were fixed based on success at
a block-pushing task. In their first trial
they performed conventional evolution of neu-
ral networks in a fixed structure: a robot
with eight non-intersecting short-range sen-
sors. In subsequent trials the number, range
and placement of sensors on the robot could
be modified during the evolutionary process.
Using this limited holistic evolution, perfor-
mance as measured by the static fitness func-
tion did not drop, and, interestingly, the num-
ber of sensors was generally minimized despite
no pressure for efficiency being built in. In
addition, when sensor range was evolved in
addition to number and position, peak per-
formance increased while sensor number still
remained relatively low. These results suggest
that holistic evolution may help robots dis-
cover solutions that are both more effective
and more efficient than would be discovered
with conventional evolution in a fixed form.

Further evidence that holistic evolution can
improve efficiency was provided by Bongard
and Paul[3], who also used a limited form of
holistic evolution to show that performance
and efficiency can be improved by allowing
evolution to modify physical structure. In this
case, variable parameters in the morphology
consisted of the lengths of the body segments
and the dimensions and placement of weights
on the legs of a biped robot whose task was

3Lego is a registered trademark of the Lego group.
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to walk as far as possible in a given amount
of time. The populations with variable mor-
phologies both performed better on average
and had higher peak performances than those
with static morphologies, providing additional
empirical support for holistic evolution; how-
ever, as in Balakrishnan and Honavar’s work,
the holistic evolution performed was fairly
limited.

Conrad[4], meanwhile, provided a theoret-
ical argument in favor of holistic evolution,
called the extradimensional bypass. Any com-
plex fitness landscape will contain peaks and
valleys, and two adaptive peaks which may
be separated by a valley in a low-dimensional
landscape may be connected by an adaptive
ridge if additional dimensions are added to the
landscape. As a holistic approach to evolution
includes more free parameters than a conven-
tional approach, the fitness landscape consists
of many additional dimensions; so adaptive
ridges may exist between what would be peaks
in a lower dimensional (fixed body) manifold
of the same space.

Stober and Gold[12] performed a variety of
experiments, with tasks ranging from wall fol-
lowing to object gathering, to evaluate the po-
tential advantages of evolving neural network
morphologies, as opposed to merely evolving
the weights of the network as in conventional
evolution. They found, however, that per-
formance did not improve significantly when
network morphologies were allowed to evolve,
and in fact successful strategies found by the
two populations were quite similar.

2.2 Existing Simulators

There exists at present no simulator up to the
task of performing holistic evolutionary devel-
opment. Sims’ work was done on a massively
parallel architecture with custom code that
cannot be made publically available. Ray,
Bongard and Paul used MathEngine, an ap-
parently now defunct real-time physical simu-
lation package produced by MathEngine PLC,

Oxford; Bongard’s more recent research and
that of Pollack have used code which em-
ployed the Open Dynamics Engine and are
not publically available.

The open source Player/Stage package does
contain a three dimensional rigid body simula-
tor, Gazebo, designed in ODE and OpenGL,
as well as Player itself, a network server for
robot control. However, specifying a robot
morphology for use in Player and Gazebo
is slow and labor intensive; a Player de-
vice must be developed to specify how the
robot interacts with its sensors and actuators,
while a Gazebo model must be hard-coded
and compiled to describe the robot’s physical
body. Other simulators are equally problem-
atic: Webots and JRoboSim require users to
describe robots similarly to the Player/Stage
project and are not intended for morpho-
logical evolution; the Graphical Workshop
for Modelling and Simulating Robot Environ-
ments (Gwell) and Robsim only allow robot
models to be hand-created by the user in a
visual runtime environment; Easybot requires
precompiled libraries to specify robot con-
trollers and does not perform collision detec-
tion or other physical modelling.

The Laboratory of Intelligent Systems
(LIS) at the Ecole Polytechnique Fédérale de
Lausanne has been developing several evolu-
tionary robotics tools including Enki, a fast
two-dimensional simulator capable of simulat-
ing large groups of robots; Teem, a software
framework for evolutionary robotics experi-
ments; and Goevo, an application for evolv-
ing neural network controllers for real or sim-
ulated robots. Unfortunately LIS does not
currently have any tools available for evolving
robot morphologies, and the pieces of their
evolutionary framework that do not directly
rule out morphological evolution are not de-
signed with this in mind.

Table 1 contains download and documen-
tation locations for the software mentioned
above.
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3 Rabbitstew

3.1 Tools

I will write the simulator in Python. For the
physics of my simulator I will use PyOde, a
set of Python bindings for the Open Dynam-
ics Engine (ODE), a native C library for rigid
body dynamics with built in support for fast
collision detection and joint connections be-
tween bodies. ODE is quickly becoming a
standard library for simulation of evolution-
ary robotics and will be well suited to this
task. I will implement a visualization of the
simulation separately using the Visual module
for Python. Neural network implementation
will be carried out using the Conx module of
the Pyro programming environment. See Ta-
ble 1 for locations of online resources for this
software.

3.2 Simulator Implementation

Rabbitstew is composed of two major parts:
the data structures which fully describe robot
genotypes for storage and manipulation, and
the physical instantiation of the robots active
in the simulation. Passive features in the sim-
ulation environment are not considered to be
a separate category but are instead treated
identically to robots; a passive structure such
as a block or a wall can be defined simply by
creating a robot with no brain.4

3.2.1 Robot Genotypes

The design of robot genotypes in Rabbitstew
is broadly based on that described by Sims[11]
with elements of Ray’s[8] implementation.

An individual robot genotype will be rep-
resented by a directed graph which is com-
posed of Nodes and Connections including an
arbitrary root Node. Each Node represents

4This may be changed in a later release of the sim-
ulator if it is found to be unsatisfactory; its major
advantage, and the motivation for this organization at
least in the initial release, is its simplicity.

one body unit and contains a Segment and a
list of Connections. Each Connection repre-
sents a physical attachment between the two
body units specified in the parent and child
Nodes and will contain a child Node, a rela-
tive position, orientation, and scale, two bits
representing joint type (hinge, ball, slider or
fixed), and a direct-recursive limit parameter
since circuits are permitted in the graph. To
prevent infinite indirect recursion, robot phe-
notypes will have a universal, externally im-
posed, user defined size-ratio limit, a restric-
tion on the number of body segments relative
to the size of the genotype.

A Segment will consist of two bits repre-
senting shape (box, sphere, or cylinder) and
physical dimensions for the Segment, with the
number and type of dimensions dependent on
the particular shape of the Segment. Shape
dimensions are relative and will be normal-
ized to have identical volume; absolute dimen-
sions of a given Segment will determined by
a combination of the parent and child Seg-
ments’ dimensions and the scale factor of the
connection between them.

Each Segment will also contain a Brain
which is represented in genotype as a directed
graph of neural units with graph connections
storing the network weights between units.
Three types of neural units will be available:
Sensors, which get input from the environ-
ment, Effectors, which send torque outputs to
the parent Joint of the Segment in which they
are located, and Neurons, which are purely
processing units with inputs from and out-
puts to other neural units. Available Sensors
will include binary contact Sensors which are
active if and only if the associated Segment
is currently in contact with any other phys-
ical body and sets of three direction Sensors
which give the normalized direction from the
center of the associated Segment to a particu-
lar source (available sources will be the center
of the target and the center of the root Seg-
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Figure 1: A sample morphological graph (attributes and parameters, including the single-level recur-
sive limit parameter for the circuit, not shown) and the resuling structure.

e e e

nnnnnn

s s s s s s

gn

Figure 2: A graph with embedded and global computational units (Neurons, Sensors, Effectors)
shown. Effector outputs to local joint connections are represented by lines to the relevant connection.
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ment of the opponent in the competition).5

A global Brain, not associated with any
particular Segment, will also available; this
Brain will consist entirely of Neurons but can
be connected to any localized neural units to
permit centralized control. With the excep-
tion of this central Brain, all individual neu-
ral units in a Brain can only be connected to
other units in the same Brain.

Note that there are no constraints on the
number or types of neural units in a Brain
aside from the limitation that the central
Brain, if it exists at all, be composed only
of Neurons. Therefore it is possible to create
a fully distributed robot controller, by using
no centralized Neurons at all, or a fully cen-
tralized one, by limiting the embedded neural
units only to Sensors and Effectors, in addi-
tion to hybrid controllers with some localized
and some centralized processing.

3.2.2 Physical Structures

When the simulation starts, each robot which
will be active in the competition is synthesized
from its genotype; when the simulation is ter-
minated the synthesized robots are destroyed.
While this can result in a considerable num-
ber of redundant graph traversals if a robot is
active in multiple simulations, the redundant
computation is only done at the initialization
of the simulation and therefore should have no
effect on individual simulation performance,
and the the memory saved by “cleaning up”
robots between simulations, which would af-
fect simulation performance if too much mem-
ory was used, more than offsets the additional
time to resynthesize robots.

5Additional Sensors and Effectors could be made
available later and might result in more interesting
and varied behavior, but for simplicity the initial sets
of Sensors and Effectors will be limited to these few.
Additionally, the direction Sensors should and will ul-
timately be generalized to give the direction to any
arbitrary (fixed or moving) target for a more general-
purpose simulator that can be used for other experi-
ments.

Synthesis of a robot proceeds from the des-
ignated root Node. In an attempt to increase
the number of graph nodes that are actually
synthesized into at least one body part be-
fore the size-ratio limit halts the process, a
breadth-first search will be used to traverse
the graph. With this method, however, a low
size-ratio limit combined with high recursive
limit parameters on connections could still re-
sult in creatures with some graph nodes that
are not synthesized into any body parts. This
is intended to make the evolutionary process
more complex and realistic, since many ge-
netic features in nature are passed down with-
out manifesting in every generation.

It should be noted that this approach still
results in a direct, one to one mapping be-
tween genotype and phenotype; such a direct
mapping has been argued[5] to be problem-
atic in evolutionary processes as it ignores the
many stages of growth, does not scale well
to large organisms, and fails to impose con-
straints of symmetry, which has been demon-
strated to increase organisms’ efficiency[2].
Regardless, I feel that the current model is
a reasonable compromise between genotype-
phenotype complexity and simulator simplic-
ity.

At each Node up to three ODE objects are
created and initialized: a Body, which pri-
marily contains an object’s mass properties; a
corresponding Geom object, which describes
the object’s spatial extent for collision detec-
tion; and, for all Nodes but the root, a Joint
between the object’s Body and the Body of
the parent Node, which physically links two
objects and provides motion constraints be-
tween them. Each robot will be stored in a
list of Geoms and an ODE JointGroup. The
Geom class has a function which returns the
Body to which it is linked so no separate list
of Bodies needs be maintained.

At each Node the corresponding neural net-
work will also be synthesized from the local
graph describing a Brain; following the syn-
thesis of individual units the central Brain will
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be constructed as well. Each Brain will be
implemented in the physical simulation as a
standard neural network.

3.3 Visualizer Implementation

At the start of a physical simulation the spec-
ifications of each robot are written out to a
data file for subsequent use by the visual-
izer. Each body unit of each robot is de-
scribed, in turn, first by a number specifying
the shape of the unit and then by that unit’s
absolute dimensions, which can vary from one
(for a sphere) to three (for a box) floating-
point numbers.

At each n timesteps during the simulation
(by default n = 1 but this can be overwrit-
ten by the user) the state of the simulation
is written to the data file. This consists of a
three dimensional position vector and an ori-
entation quaternion (both provided by ODE
accessor functions) for each ODE Body, where
the states of Bodies are given in the same or-
der as the initial data. A single small robot
with three body units, therefore, would yield
a state output of 21 single-precision floating-
point numbers per output cycle.

When the visualizer starts it will first read
in unit data, one unit at a time, creating a
three dimensional model of each unit using the
Python Visual module and storing the units in
a single list. Models will then be initialized to
the starting position and orientation given by
the first set of state data and all models will
subsequently be set visible. Visualization pro-
ceeds in a loop by reading in each set of time-
dependent state data and updating all models
accordingly until all data has been processed
or the visualization is terminated by the user.

For spheres and boxes, position in three di-
mensions is given directly by the first three
values of the 7-tuple representing a unit’s
state. Unfortunately slightly more computa-
tion is necessary for cylinders, as ODE repre-
sents a cylinder’s position by its center of mass
and the Visual module represents a cylinder’s

position by the central point at one end of the
cylinder. Orientation is determined from the
last four values which give the unit’s orienta-
tion quaternion q by setting the object’s axis
vector to the last three terms of the result of
the operation q

′
× (0, 1, 0, 0) × q and its up-

directional vector to the final three terms of
the result of the operation q

′
× (0, 0, 1, 0) × q,

where q
′ = (q0,−q1,−q2,−q3).

4 Long-Term Experiment

After the simulator has been developed, I will
run two evolutionary algorithms, one on a
population of randomly-generated morpholo-
gies and employing holistic evolution; the
other on a population with uniform, engi-
neered morphologies and evolving only the
weights of the neural network control struc-
tures.

I intend to use a all-versus-best two-at-a-
time competition6 similar to that of Sims[11],
where pairs of robots from the population will
be physically simulated as they compete in
a time-limited zero-sum game. The evalua-
tion of fitness I will use will be a ratio of the
two robots’ center-of-mass distances from the
center of the “world” after a short period of
simulated time; so robots would have to find
strategies both for quickly reaching the goal
point and for preventing their opponent from
doing so. This competitive, zero-sum fitness
function should result in fairly fast and dy-
namic evolution with a wide range in popula-
tions.

At periodic intervals throughout the evolu-
tionary process I will select the two or three
highest-performing members of each popula-
tion in the current generation and I will have
these “champions” compete, in the same task,
with one another. These interpopulation com-
petitions will have no effect on the evolution of

6Variations on competition size and structure are
of course possible and could be employed for follow-up
experiments.
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Software URL

Easybot http://iwaps1.informatik.htw-dresden.de/Robotics/Easybot/

Enki http://lis.epfl.ch/resources/enki/

Goevo http://lis.epfl.ch/resources/evo/

Gwell http://diablo.ict.pwr.wroc.pl/\%7epjakwert/

JRoboSim iwaps1.informatik.htw-dresden.de/Robotics/JRoboSim/

MathEngine www.mathengine.com (website down)
ODE www.ode.org

Player/Stage playerstage.sourceforge.net

PyOde pyode.sourceforge.net

Pyro www.pyrorobotics.org

Robsim http://www10.brinkster.com/geniusportal/robsim.html/

Teem http://lis.epfl.ch/resources/teem/

Visual www.vpython.org

Webots www.cyberbotics.com

Table 1: Software locations.

each group; they will be used simply to mea-
sure and compare the progress of each popu-
lation.7 In this manner I will evaluate the rel-
ative success of each population as compared
to the other at different stages of evolution.

I predict that in the early stages of evo-
lution the holistically evolved population will
perform far worse than the stable-body pop-
ulation, by virtue of the latter’s having an
effective and functional body to work with;
the latter group essentially has a significant
head start by having a pre-engineered body.
However, I predict that this will eventually
reverse, and that the holistically evolved pop-
ulation will ultimately outperform the stable-
body population, for several reasons.

First, by having their brains and bodies de-
velop simultaneously, the holistically evolved
robots will be able to take full advantage
of their physical structure and will be able

7Some obvious alternatives include periodically pit-
ting the best performer of each population against each
of the members of the opposite population at the same
generation, or competing each member of the two pop-
ulations; best vs. best has the (dubious) advantages
of simplicity and quicker processing time, but other
methods could be used for additional follow-up analy-
sis or for further experiments.

to evolve relatively uncomplicated strategies
that hinge on the particular constraints and
idiosyncrasies of their bodies, and they will si-
multaneously be able to modify their physical
structures to complement and build upon the
strategies that they have already developed.

Second, their population will be consid-
erably more variable and therefore selection
pressure to find general-purpose and adapt-
able strategies may be stronger than in the
stable-body population. And third, as posited
by Conrad[4], the extra dimensions of the evo-
lutionary search space may allow for addi-
tional “ridges” in the solution landscape con-
necting what in a lower-dimensional space
would be two separated peaks.

Following this experiment a number of av-
enues for further study will be available, in-
volving modifications of a number of parame-
ters in the experiment. In addition to varying
the competition structure and the sensors and
body parts available to the evolving robots,
a variety of tasks could be employed besides
the proposed “control the center” goal. Un-
fortunately it is quite difficult to predict the
effects of any of these modifications, so I in-
tend to consider them only after completing
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the present experiment.
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