
Proceedings of the Class of 2006 Senior Conference, pages 27–33,
Computer Science Department, Swarthmore College c©2005

Building a Neural Network for Misuse Detection

Alan McAvinney Ben Turner

December 16, 2005

Abstract

One of the fastest-growing areas of computer sci-
ence research is in the area of security, specifi-
cally in intrusion detection. Much research has
been done to attempt a functional and useful
intrusion detection system, but so far no satis-
factory solution has emerged. Recently, atten-
tion has focused on using artificial intelligence to
train an intrusion detection system (IDS), rather
than trying to build one from scratch. A machine
learning intrusion detection system has many po-
tential advantages over both human-engineered
rule-based expert systems and purely probabilis-
tic approaches. Of the many types of machine
learning systems, neural networks offer one of the
most promising methods for creating intrusion
detection systems that are accurate and man-
ageable. In this paper we present our intrusion
detection system, which uses the audit logs gen-
erated by the Audlib software to train a simple
recurrent network to flag system events as either
part of an attack, or not part of an attack.

Keywords: intrusion detection, misuse

detection, machine learning, neural

networks.

1 Introduction

1.1 Intrusion Detection Systems

An intrusion detection system (IDS) attempts
to identify the occurrence of unusual, illegal,
and/or undesired accesses to a computer or net-
work of computers. The IDS creates alerts which
can direct a system administrator or security

professional (which might theoretically be an-
other computer program) to records of attacks,
so that data can be recovered, security improved,
and, potentially, legal action taken against the
intruder. Thus it is important that the IDS have
both a high rate of true positives (that is, few
attacks go undetected), and a low rate of false
positives (that is, few non-attacks are mistakenly
labeled as attacks).

A great deal of work has been done in ana-
lyzing the performance of various kinds of IDSs;
see Section 2 for a detailed discussion. After a
review of the literature, we believe that one of
the most fruitful approaches for IDSs in the near
future will be in machine learning systems. In
this spirit, we implement a neural-network-based
IDS. A neural network, specifically a type of neu-
ral network called an Elman Network or a Simple
Recurrent Network [Elm90], is a learning system
which is well suited to tasks which require some
temporal or contextual knowledge to complete1.
Our project was to train a neural network to ac-
curately classify system events as attacks or not
attacks.

There are essentially two components to any
IDS: a record of potentially relevant events on
the computer under attack, and an indication of
which events correspond to attacks. Most IDS
research focuses on the latter, and rightly so; but
it is worth noting that the IDS can only be as
good as the data it is fed. (For a discussion of
how this is an especially important concern in a
neural-network-driven IDS, see Section 1.3.) For
our system, we chose to use the Audlib audit

1For instance, a neural network can learn to predict

that the next bit in the series 01010101 is probably 0.

27



log generating package [Kup04]. Audlib replaces
standard library calls with new versions which
record the calling process, the arguments to the
library call, and other useful information before
letting the intended library call go through nor-
mally. We then pre-processed the data by pars-
ing Audlib’s log files into lists of real values to
be fed directly to the neural network as input.

1.2 Theory of Neural Networks

A neural network is based on the idea, inspired
by biological neuron-based brains, that many
simple nodes, densely connected, can produce
complex output. Each node takes a set of real-
valued inputs and outputs a single real-valued
output; nodes can take their inputs from raw
data or from other nodes, and their output can
likewise be fed to other nodes or can represent a
final result. The weights (rules by which nodes
change their inputs into outputs) can gradually
be updated through a process known as back-
propagation, which trains the network’s output
towards some specified ideal.

A neural network’s nodes are organized into
layers, in which each node in layer n is connected
to each node in layer n+1. When the concept of
a context layer is introduced—that is, when part
of the network’s input on each time step is the
values of its hidden-layer nodes from the previ-
ous time step—the network gains the ability to
’remember’ what its weights were in the past,
and the computational power of the network be-
comes truly impressive—good enough to learn a
variety of tasks that would be extremely difficult,
if not impossible, to engineer by hand.

It is our belief that among the tasks that can
be learned by a neural network is that of de-
ciding when an attack is taking place against a
computer system. By feeding the network in-
put that represents some important features of
a particular event on the system, we can train
the network to recognize events which are likely
part of an attack. Furthermore, thanks to its
contextual memory, the network can take the
events seen previously into account when mak-

ing its classification. The primary task for us as
researchers, then, is to properly select features
from the thousands of metrics for determining
what is happening on a computer system, and
present them to the network in such a way that
it can make meaningful abstractions and learn
the characteristics that define an attack.

1.3 Pros and Cons of Neural Net-
works

A neural network has several advantageous char-
acteristics that make it an attractive choice for
the intrusion detection problem. It is highly
robust—resistant to the noise which will in-
evitably crop up in any real dataset. It is also
fast enough (once its training is complete) to con-
ceivably run in real-time on top of a real com-
puter system. Its outputs are not limited to a
simple “yes” or “no”: they can be probabilistic,
and they can be used to sort inputs into arbitrar-
ily many separate categories. Most importantly,
perhaps, a neural network has the ability to de-
tect novel attacks, that is, attacks it was never
been exposed to during its training. Because it
works by creating and refining abstractions from
raw data, a neural network learns not just what
is an attack and what is not, but what makes an
attack an attack.

The neural network approach does have a few
significant disadvantages. First, its ability to
learn a task is entirely dependent on the input
data; as the saying goes: garbage in, garbage
out. But this problem is made far worse by
the notorious “black box” nature of neural net-
works: because it is difficult for a human analyst
to explain the neural network’s behavior in log-
ical terms, it is possible that the network is not
learning the same problem that its users think
it is.2 This black box problem can only be over-

2For example, if the intent is to learn to distinguish

nouns from verbs in English sentences, but all the nouns

in the training data happen to start with an ’S,’ then the

network is likely to learn to distinguish words that start

with ’S’ from other words—and perform very poorly when

exposed to new data.

28



come through careful feature selection and rig-
orous training on a wide variety of data.

On the whole, we believe a neural network
to be well-suited to the intrusion-detection task.
The key benefit of a neural network over other
types of IDSs, even other machine-learning-
based IDSs, is its ability to abstract away from
its particular inputs to learn their general char-
acteristics and thus correctly classify new inputs
that it has never seen before. In the world of
computer security, when new attacks–which are,
crucially, not much different from old attacks ex-
cept in particulars—constantly arise, the ability
of a neural network to learn to solve this type of
problem is enormously appealing.

2 Previous Research

Intrusion detection systems have in recent years
been divided into two groups: those which per-
form anomaly detection—also called behavior-
based systems and those which perform mis-
use detection–also called knowledge-based sys-
tems [DDW99]. Misuse detection systems at-
tempt to determine whether an attack has oc-
curred by scanning the system’s audit data for
occurrences of known attacks. Anomaly detec-
tion systems rely instead on a statistical analysis
of the system’s behavior, signaling out anoma-
lous activity as likely attacks. Each approach has
its drawbacks, the most important being that
misuse detection systems cannot detect intru-
sions which do not match the profiles in their
set of known attacks, while anomaly detection
systems can potentially erroneously classify ac-
ceptable behavior as an attack, or conversely
may mistake attacks for legitimate use. Ma-
chine learning approaches have been suggested
for both types of intrusion detection system.

In 1997 Lane and Bradley attempted to build
a learning system for anomaly detection [LB97].
Their objective was to learn a profile for each
legitimate user in the system, and then exam-
ine future actions by the users, using the learned
profile to determine if an anomaly had occurred.

User profiles were comprised of sequences of ac-
tions (information about command names, be-
havioral switches, and number of other argu-
ments for each command each user entered at the
shell prompt). Once the profiles were built, each
subsequent sequence was compared against the
appropriate user’s profile; a similarity function
determined if the new sequences were normal or
abnormal. While the authors may be right to
believe their system shows promise, their results
are based on data from only four users. It is also
worth noting that the system is not truly a learn-
ing system, as it makes no attempt to generalize
from its input—it simply compares sequences it
has seen to new sequences, in a deterministic way
that is defined by the authors, not the system it-
self.

Ghosh, Schwarzbard, and Schatz’s 1999 pa-
per examines three anomaly detection systems,
the last of which is a true learning system which
employs a neural network to detect anomalies
[GSS99]. The authors collected audit data from
their network using Sun Microsystem’s Basic Se-
curity Module, a built-in auditing tool on Solaris
machines. They then tested three techniques
on their ability to correctly identify anomalous
data: an equality matching algorithm, a simple
feed-forward backpropagation neural network,
and a simple recurrent network (Elman net).
Each system performed better than the one be-
fore, and the authors claim that the Elman net
could detect 77.3% of intrusions with no false
positives, and 100% of intrusions with “signif-
icantly fewer false positives than either of the
other two systems.” This result demonstrates
the potential of a neural network solution to the
intrusion detection problem and encourages fur-
ther research into the performance of Elman nets
at the intrusion detection task.

Another application of neural networks is pre-
sented in Cannady’s 1998 paper [Can98]. The
author mentions the primary shortcoming of
rule-based systems for misuse detection, namely
that their set of known attacks is extremely un-
likely to be complete, and proposes a misuse de-

29



tection system which utilizes a neural network
to learn what characteristics are present in an
attack, and then flag future events as attacks or
not. The system was trained on a set of data rep-
resenting network packets, some of which were
known to be legitimate and some of which were
known to be attacks. When it was presented
with another set of similar data that had not
been available to it during training, the network
correctly identified packets as attacks or not.
This result suggests that not only can a neural
network learn to identify anomalous behavior, it
can also learn the characteristics that are shared
by various attacks and apply that knowledge to
detect system misuse.

3 Our Experiment

3.1 The Network

To implement our neural network, we used
the tools provided by Pyrobot, a Python li-
brary [BKea]. We set up a standard simple re-
current network with three fully connected lay-
ers: input, hidden, and output. (See Figure ??.)
The input layer consisted of three components:
the audit data, a standard contextual memory
layer (i.e. a copy of the previous step’s hid-
den layer) and a per-process contextual memory
layer (a copy of the hidden layer from the last
time step in which the data came from the same
process it is currently coming from). The hidden
layer had N nodes each, and thus each context
layer had N nodes also. The output consisted of
a single node, which we refer to as “the classifi-
cation bit” (although in truth it is a real value
between 0 and 1, not a binary 0 or 1). The clas-
sification bit indicated the presence or absence of
an attack; values below a parameterized thresh-
old corresponded to “not an attack,” while values
above another threshold meant “attack.”

3.2 Data Gathering and Pre-
Processing

The first stage of our experiment involved collec-
tion of data using the Audlib tool. Two datasets
were created: a training set and a testing set.
The training set consisted of data that would
be used to train the neural network to identify
attacks. The testing set consisted of data that
would be used to test the performance of the
neural network on novel data. Each dataset con-
tained examples of both normal system usage
and attacks. To generate attack data, we used a
suite of attack tools from www.metasploit.com.

Next we parsed the raw data to process it into
a form suitable for use by a neural network. We
transformed the data into a set of real-valued
inputs. The features available to the neural net-
work were:

• Library Call Name (hashed, normalized to range [0,1])

• For each argument to the system call:

– argument size

– argument type

– argument value (strings are hashed; all values normalized)

• PID of calling process (normalized to range [0,1])

• PID of calling process’ parent process (normalized)

• Real UID of calling process (normalized)

• Effective UID of calling process (normalized)

• Saved UID of calling process (normalized)

• Real GID of calling process (normalized)

• Effective GID of calling process (normalized)

• Saved GID of calling process (normalized)

To avoid inadvertently teaching the neural
network to learn that specific UIDs are associ-
ated with attacks, we made sure that there was
no UID which appeared only in attack data. In
the real world, this might not be the case; there
might in fact be some user id which was only
used by an attacker. But it is far more likely
that an attacker would impersonate a legitimate

30



Each process
Copied for

Per−Process Context Audit Data Input Contextual Memory

Classification

Hidden Layer

Copied on each network step

Figure 1: The network architecture.

user (or superuser) and we had to be sure that
our IDS could detect this type of activity.

3.3 Training

Once this pre-processing was complete, we could
begin training the neural network. Using the
timing information from the Audlib tool, we sent
input data to the network in chronological order
(note that the network itself had no access to
the time stamps). The network was trained to
output a 1.0 on events known to be an attack
and a 0.0 on events known to be not an attack.3

To train the confidence bit, we simply told the
network to try for a value of 1.0 when its clas-
sification bit matched the expected value, and
0.0 otherwise. The network was trained until
its performance on the training data reached an
acceptable level of accuracy. To prevent over-
training (the phenomenon of the network learn-
ing its training data too specifically, thus making
it unable to evaluate novel data), we periodically
turned off learning and tested the network on the
testing data; if its performance on this data was

3There is a small but non-zero chance that some of our

events were mislabeled in the training data, because we

have no guarantee that an attack was not taking place

against the system while we were collecting data. There

is no evidence of such an attack taking place, however.

We believe that the only attacks present in the data are

those that we created ourselves.

better than ever before, we saved the network’s
nodes’ weights to a file. Thus the file saves only
the weights which performed best on the inde-
pendent testing data.

4 Results (or lack thereof)

We defined an “epoch” as the amount of time it
took to train the network once on each piece of
data in the training set. We trained the network
for as many epochs as possible before stopping
it to evaluate our results. When we did begin to
evaluate the results, we found that the network
reported a 100% accuracy on its input after the
first epoch—that is, the network thought that
it perfectly classified each piece of data. Obvi-
ously this result is highly unlikely. We are forced
to conclude that either our network implementa-
tion or our data is flawed, and therefore have no
meaningful results to report.

It should be noted that, even had this unex-
pected bug not occurred, any results from our
current data would be preliminary at best. We
are confident in the quality of our normal (i.e.
non-attack) data, but our attack data, which
consists of merely running (unsuccessfully) some
standard attack tools downloaded from the In-
ternet, is probably not sufficiently varied to pro-
vide a useful basis for the network to learn about
attacks in general.

31



5 Directions for Future Work

This experiment demonstrates nothing conclu-
sively about the viability of neural network-
trained misuse detection systems. A more di-
verse set of attack data is required before a
strong conclusion can be made. Thus the first
step toward extending this experiment in the fu-
ture would be a thorough collection of attack
data from as many sources as possible. The
term “critical mass” is a useful one: a neural net-
work must have enough good input data to learn
something meaningful about the general classes
of data it encounters, but after a certain point,
no new data must be collected because the neu-
ral network will have learned everything it can
about the problem. So we are hopeful that the
classic computer security problem of the hack-
ers remaining “one step ahead” can be overcome
with enough effort. Collecting new attack data
also has the side benefit of stress-testing the rel-
atively new Audlib system. Additionly it would
be much better to collect enough attack data
to make a significant percentage of the train-
ing data attacks, in order to prevent catastrophic
forgetting4.

An ideal way to collect this attack data would
be through use of a Honeypot5. This provides
a diverse set of attack data with minimal effort
from the researcher, as well as data on common
types of misuse, and has the benefit of recording
the actual actions of hackers, worms, and viruses
in the wild, rather than the simluated attacks we
used in this experiment.

Once a suitable corpus of input data is gath-
ered, the experiment should be run again in the
same manner as described in this paper. Ideally
multiple neural networks could be trained simul-
taneously with varied network parameters, since
most of the ideal values for any given parameter

4A pheonomenon in which a neural network learns a

task, then after training on a sufficiently large number

of inputs of a different nature, no longer succeeds at the

original task
5A Honeypot is a computer with no legitimate use—

any activity on it must therefore be an attack

of the network (such as the number of hidden
nodes, the learning rate, and the momentum, if
any) are determined experimentally on a case-
by-case basis.

Finally, the viability of a neural network which
provides more detailed information about the at-
tacks it identifies should be explored. In the cur-
rent experiment, the network outputs only one
value, giving a “yes/no” answer for the question
“Is this library call part of an attack?” But a
neural network could theoretically be trained to
perform a much more complicated task, such as
classifying the inputs into N distinct categories
based on what kind of attack they were associ-
ated with. An IDS which not only signals that an
attack has taken place but also identifies some-
thing about the nature of the attack would, one
imagines, be quite useful, and the current ex-
periment should be extensible to this problem
with relative ease—provided that the input data
is carefully classified as it is collected, either by
a human expert who knows what type of behav-
ior to expect from a given attack, or by another
IDS which has proven to be adept at identify-
ing the most common attacks. Again, the col-
lection of attack data is a time-consuming one,
but, thanks to the neural network’s power of ab-
straction, the task will have a definite (though
perhaps not well-defined) end.

6 Acknowledgements

Thanks to Prof. Ben Kuperman for the Audlib

tool and numerous helpful suggestions and com-
ments; Prof. Lisa Meeden for the Pyrobot library
and for introducing us to neural networks; the
Swarthmore College class of 2006 Computer Sci-
ence Majors; and everyone who allowed their ac-
tivity on the system to be logged for our use.

References

[BKea] Douglas Blank, Deepak Kumar, and
et al. Pyro: A python-based versatile

32



programming environment for teach-
ing robotics.

[Can98] J. Cannady. Artificial neural net-
works for misuse detection. In Pro-
ceedings of the 1998 National Infor-
mation Systems Security Conference
(NISSC’98) October 5-8 1998. Arling-
ton, VA., pages 443–456, 1998.

[DDW99] Herve Debar, Marc Dacier, and An-
dreas Wespi. Towards a taxonomy
of intrusion-detection systems. Com-
puter Networks, 31, 1999.

[Elm90] Jeffrey L. Elman. Finding structure
in time. Cognitive Science, 14(2):179–
211, 1990.

[GSS99] Anup K. Ghosh, Aaron Schwartzbard,
and Michael Schatz. Learning pro-
gram behavior profiles for intrusion
detection. In Proceedings 1st USENIX
Workshop on Intrusion Detection and
Network Monitoring, pages 51–62,
April 1999.

[Kup04] Benjamin A. Kuperman. A Catego-
rization of Computer Security Moni-
toring Systems and the Impact on the
Design of Audit Sources. PhD thesis,
Purdue University, West Lafayette,
IN, 08 2004. CERIAS TR 2004-26.

[LB97] T. Lane and C. E. Brodley. An appli-
cation of machine learning to anomaly
detection. In Proc. 20th NIST-NCSC
National Information Systems Secu-
rity Conference, pages 366–380, 1997.

33


