
Proceedings of the Class of 2006 Senior Conference, pages 9–18,
Computer Science Department, Swarthmore College c©2005

Building a Heterogeneous Honeynet

Javier Prado
jprado1@swarthmore.edu

Heather Jones
hjones2@swarthmore.edu

December 13, 2005

Abstract

A small network of honeypots, each running a
different operating system, was constructed in-
side the campus network at Swarthmore Col-
lege. Although preexisting honeynet software
was used, quite a few difficulties were encoun-
tered. These problems, and solutions to those
that were solved, are presented in this paper.

1 Introduction

It is critical for any misuse intrusion detection
system to know how to be able to detect the lat-
est attacks. With new attacks emerging every
day, this can be quite difficult. One tool devel-
oped to assist in keeping pace with the attackers
is a honeypot: a computer with no purpose other
than to be attacked and collect data on the at-
tacks it suffers. A honeynet is an entire network
used in this way. Because so many of the attacks
in use today involve an intruder gaining control
of a computer and then using it to attack other
machines, a honeynet operator must make sure
that his honeynet cannot only collect data effec-
tively, but can also stop his machines from being
used to launch further attacks. This makes the
task of building a honeynet from scratch very dif-
ficult. Fortunately, there are a number of tools
already available to capture and control traffic on
a honeynet. The most important contribution,
perhaps, is the Honeynet Project’s Honeywall
Roo, which combines several honeynet technolo-
gies onto a bootable CDROM, including the net-
work packet sniffer Snort, a server for the host-

based data capture module Sebek, the ability to
limit traffic from the honeynet, and a web GUI
for administration and data analysis. The idea
of the Roo CDROM is to make it easy for any
organization to set up its own honeynet.

We set out to build a honeynet using the Hon-
eywall CDROM Roo in order to research the dif-
ferent kinds of attacks that occur on different op-
erating systems. We found, however, that setting
up a honeynet is not as easy as it looks. Some of
our problems were due to bugs in various parts
of the system. Others occurred when we failed
to understand key details about how the system
was supposed to work. While the latter could be
dismissed as due entirely to our inexperience, we
believe they provide valuable information about
what the makers of the CDROM Roo have as-
sumed that their users will know.

First, we will provide some background about
the Honeynet Project, other research on attacks,
and details of how the Honeywall Roo works.
Next, we will discuss the architecture of our hon-
eynet and the problems we encountered with
some of the components of the system. Finally,
we will draw conclusions about what we have
learned from this experience.

2 Background

2.1 Honeypots and Honeynet.org

Beginning in 1999, the Honeynet Project has
been developing and using honeynets to collect
and distribute knowledge about the black-hat
community [6]. The first phase of the project

9

involved testing the idea that data captured
by honeynets could provide useful information
about attacks. In the second phase, which began
in 2002, a second generation of honeynet technol-
ogy (Gen II) was developed to be simpler, more
interactive, safer, and easier to deploy than pre-
vious architectures. The third phase packaged
everything necessary to set up a honeynet onto
a bootable CD-ROM. This has made it much eas-
ier for organizations around the world to set up
their own honeynets. The fourth phase involves
the development of a centralized data collection
system. As the project has progressed, it has
expanded to become the Honeynet Research Al-
liance, with 20 member groups around the globe.

We are using the Honeynet Project’s Gen III
technology to implement our honeynet. Signif-
icant improvements made between Gen II and
Gen III include a more automated installation,
a web GUI for administration, and a capability
for automatic updates [9].

A similar experiment to the one we initially
set out to do here was performed as a part of
the Honeynet Project. They compared data
from Windows, Linux, Solaris and OpenBSD
machines, and discovered that each operating
system attracted different kinds of attacks. On
Windows systems, they saw worms and auto-
mated attacks. On Linux systems, they saw at-
tacks originating mainly from Eastern Europe,
especially from Romania, that exploited known
vulnerabilities or employed automated tools. On
Solaris and OpenBSD, they saw more advanced
or interesting attacks [6].

2.2 Related Work

In a 2005 paper entitled “A Pointillist Approach
for Comparing Honeypots,” Pouget and Holz ex-
amined how a three-machine honeynet running
Windows 98, Windows NT Server and Redhat
Linux 7.3 server could be used to make a low-
interaction honeypot emulating these three ma-
chines more believable [2]. They classified at-
tacks into three categories: Type I attacks tar-
geted only one machine, Type II attacks targeted

two out of three machines, and Type III attacks
targeted all three machines. Approximately 60
percent of the attacks they recorded were of Type
I, and 35 percent were of Type III. Of the few
Type II attacks, 88 percent were judged to be
Type III attacks for which the message to one of
the machines had been lost, 9 percent were due
to scanning attacks that targeted every other IP
address, and 3 percent were believed to be at-
tacks on the two Windows machines only.

Yegneswaran, Barford and Ullrich used data
from 1600 networks around the world to study
the global characteristics of internet attacks[11].
In addition to analyzing the volume and distri-
bution of attacks in their 2003 paper “Internet
Intrusions: Global Characteristics and Preva-
lence,” they presented a classification of four
scan types. A vertical scan examines several dif-
ferent ports on a single machine. A horizontal
scan examines the same port on several differ-
ent machines. A coordinated scan examines the
same port on the machines within a subnet and
originates from several sources. A stealth scan
is a horizontal or vertical scan executed with a
very low frequency in order to avoid detection.

Weaver, et al. develop a taxonomy of com-
puter worms based on method of target dis-
covery, carrier, activation, payload, and at-
tacker motivation in their 2003 paper on the
subject[10]. Following this taxonomy, target dis-
covery techniques are scanning, pre-generated
target lists, external target lists, internal target
lists and passive discovery. Carriers include the
worm itself, a second channel through which the
worm completes an initiated infection, and nor-
mal traffic in which the worm embeds itself. A
worm can be activated by a human, by a hu-
man activity, by a scheduled process, or by it-
self. The most common payload for a worm is a
nonexistent or nonfunctional one, although there
are many other possible payloads, including elec-
tronic or physical remote control, damage, or
denial of service. Attackers may be motivated
by experimental curiosity, pride, commercial ad-
vantage, criminal gain, random protest, political
protest, terrorism, or cyber warfare.

10

2.3 Honeynet Details

The Know your Enemy series of documents made
available by the honeynet.org website has proved
to be an invaluable resource. The seminal pa-
per for any honeynet project is the Know your
Enemy: Honeynets paper [8]. This paper gives
a survey of the basic, fundamental concepts of
a honeynet. The two fundamental aspects of a
honeynet as they apply to our project are the
data control concept and the data capture con-
cept. In data control, the key concept is that it
is imperative to circumvent an intruder’s ability
to attack other systems outside of the honeynet
once the intruder has compromised a honeypot
within the honeynet. This responsibility primar-
ily rests on the honeywall’s ability to detect ma-
licious activity on the network and in each of
its honeypots, and then respond in turn to the
threat at hand. The paper makes clear that the
actual implementation of the data control (our
honeywall) is ultimately our decision but the au-
thor does provide some suggestions for our imple-
mentation. Among the suggestions include the
layering of security measures to help obfuscate
the presence of the honeywall and for the hon-
eywall to operate in a fail closed manner where
any failure of one of our components will result
in all network traffic from the honeynet being
terminated [8]. The other fundamental concept
of a honeynet, data capture, concerns the log-
ging and reporting of an intruders activity, ba-
sically the reason why the honeynet exists. For
our project, the two primary elements of data
capture are the Sebek client and the honeywall’s
log of network activity.

Because the main goal of this project was to
get the honeywall to the point where it could
collect useful data, the Sebek client is one of the
fundamental components of our project. Sebek
is a solution to a problem that has faced the hon-
eynet community: how to observe an intruder’s
actions without the intruder knowing that he or
she is being monitored. The paper discussing
this issue [7] shows how simple network monitor-
ing, although a viable solution, is undermined by

an intruder’s ability to use encryption to obfus-
cate his or her activity. The only way to capture
unencrypted data is to catch it before it is en-
crypted (i.e., before the attacker sends it onto the
network), or after it is decrypted (i.e., once it has
reached its final destination). Thus, Sebek pro-
vides information on an attacker’s actions from
the attacked host. In this way, data on the at-
tacker’s keystrokes, processes run, files opened,
and other system activities can be recorded. The
key feature of the Sebek client is that it is incor-
porated into the kernel of the operating system
1. Since it is a part of the kernel, it is able to
effectively hide from the intruder. Conceptually,
this article [8] describes that the user space and
the kernel space are mutually exclusive. This be-
ing the case, having the Sebek client become a
part of the kernel is a solid way of hiding the
data capturing component of a honeynet. The
Sebek client then stores in a buffer the recorded
actions of an intruder, encrypts the information,
and sends it to the honeywall to which the honey-
pot is connected. Because the Sebek client is in-
stalled on the attacked host, it provides informa-
tion about what happens on the host which could
not necessarily be gathered from an examination
of the network traffic to and from the host, even
if this traffic could be decrypted. Thus, Sebek
provides a valuable complement to the network
data collected by the honeywall[7].

While making the Sebek client a part of the
operating system helps to keep it hidden from
the attacker, it also creates a problem when hon-
eypots with different operating systems are used.
As Windows is even more different from Linux
than FreeBSD is from Solaris, we need to ensure
that each Sebek client we install is appropriate

1Sebek was originally adapted from a blackhat rootkit
called Adore [1]. Such rootkits were developed to change
the behavior of the kernel without revealing their exis-
tence. Recently, Sony has developed a rootkit aimed to
enforce usage rules on copyrighted materials [3]. This has
produced sharp criticism, not only from advocates of pri-
vacy, but also from Windows experts who claim the code
is poorly written and can compromise the security of the
Windows operating system.

11

for the operating system that it is going to be in-
stalled on. The Honeynet Project has completed
much of this process of adapting the Sebek client
to each operating system environment. For the
Windows environment, the developers have gone
so far as to provide a simple executable which
automatically incorporates the Sebek client into
the kernel of the Windows operating system and
leaves the incorporated Sebek client to be cus-
tomized by the user. For FreeBSD, a loadable
kernel module of the Sebek client is available.
For Linux, the kernel must be rebuilt to incor-
porate Sebek. Information regarding the actual
Sebek client implementation exists on the Sebek
homepage within the honeynet.org website [4].

3 Our Own Honeynet

We wanted to examine the differences between
the attacks seen on different operating systems,
so we decided to set up a Honeynet with several
computers running different operating systems.
We chose to use the Honeynet Project’s Honey-
wall Roo bootable CD-ROM, believing that this
would make the setup portion of the project vir-
tually effortless. Unfortunately, this did not turn
out to be the case. Instead, we found that the
setup became a project in itself. What follows is
a description of our honeynet, the problems we
encountered, how we solved these problems, and
what still needs work.

3.1 Honeynet Architecture

Our honeynet consisted of five machines: one
running the Honeynet Project’s Honeywall Roo
(including a Fedora core), one running RedHat
Linux, one running Windows XP, one running
FreeBSD, and one running Solaris. Because
there was no version of Sebek for Solaris that
was compatible with the Gen III honeywall, we
planned to simply examine the traffic going to
and from the machine. After weeks of crawl-
ing around behind our computers plugging and
unplugging various cables, we obtained a KVM

switch to allow us to easily interact with any of
the machines except the Solaris using the same
monitor, keyboard and mouse. Our honeynet
was located within Swarthmore College’s cam-
pus network; we will refer to this external net-
work as the internet, although being inside of
this network did present problems that we would
not have seen had we actually been directly con-
nected to the internet. All the individual honey-
pots were connected to the honeywall through a
LanTronix 10 base-T ethernet switch (See Fig-
ure 1).

3.2 The Honeywall

The honeywall was a Dell Precision 330 with an
Intel Pentium 4 processor. We installed two ad-
ditional network cards, allowing us two ethernet
connections to the internet one as a route to the
honeypots and one for remote management of
the honeywall and one ethernet connection to
our own honeypot network.

We set up the honeywall to run in bridge mode
as opposed to NAT (Network Address Transla-
tion) mode (See Figures 2 and 3), allowing each
honeypot to have its own IP address because we
wanted each to appear as a distinct target. We
initially had only two network cards because the
Honeywall documentation indicated that a third
network card was only necessary if remote ad-
ministration was desired. Yet, this simple setup
was not functional because our honeywall soft-
ware kept trying to find a third network con-
nection. This prevented us from completing a
full installation of the honeywall, so we installed
a third network card. After this installation,
we needed to provide an IP address for honey-
wall’s configuration utility. Since we were be-
hind Swarthmore College’s network, we could
not simply set an IP address arbitrarily. Be-
cause the honeywall intallation did not include
a DHCP client or any other similar IP configu-
ration program, we could not determine the IP
address from the honeywall machine. We solved
this problem by using the live Linux CD Knop-
pix. This allowed us to run dhclient to get an

12

FreeBSD Windows

HoneyWall

Linux

Network
Swarthmore

Management
Remote

Figure 1: Diagram of Honeynet Architecture

xxx.yyy.zzz.214
Remote Access

xxx.yyy.zzz.194

Attacker

 Switch

 Honeywall

 Bridge Mode

xxx.yyy.zzz.192

xxx.yyy.zzz.212

Figure 2: Diagram of bridge mode configuration

IP address which we could then enter into the
configuration utility.

One of the main improvements that came with
the Generation III honeywall technology was the
web interface, Walleye. This GUI allows the hon-
eynet administrator to interact with the honey-

Remote Access

xxx.yyy.zzz.194

Attacker

 Honeywall

xxx.yyy.zzz.195

 Switch

10.0.0.1

10.0.0.2

10.0.0.3

10.0.0.4

NAT Mode

Figure 3: Diagram of NAT mode configuration

wall in a more user-friendly environment than
the text-based menu utility that can be run on
the machine. Using this interface, we were able
to observe a small amount of traffic on coming to
and from our honeypots mostly bootp, domain
or NetBIOS traffic, plus any traffic we created

13

ourselves while testing the system. Supposedly,
Walleye identifies what operating system each
machine is running. While this occurred suc-
cessfully for some of the machines connecting to
our honeypots, it initially did not work for the
honeypots themselves for some unknown reason.

On two occasions, we found that we could not
log in to Walleye at all. After we entered in a
username and password, the system would be-
gin the login process but load so slowly that it
never got to the welcome page. We then logged
into the honywall directly to investigate what
might be wrong. Reloading the or even reboot-
ing the honeywall did not fix the problem. Even-
tually, we realized that the directory where the
honeywall was storing its data had become full.
The first time, moving the data to a directory
with more free space fixed the problem. The
second time this problem occurred, we realized
that we needed more space than was available
on the honeynet’s hard drive, so we dumped all
the data to another machine. We then used the
menu utility to clean out the logging directo-
ries. In doing so, we noticed an interesting mes-
sage: apparently the honeywall had not yet been
programmed to clean out its MySQL database
files. Since the honeywall was still failing to
start MySQL, which it uses to make its collected
data available to view over the internet and man-
age the users for Walleye, we initially tried re-
moving several database files that were partic-
ularly large, thinking that perhaps the overly
large size of the database was preventing it from
loading. This did not fix the problem, however,
so we restored the files from the external ma-
chine to which we had previously dumped all our
data. After re-running the startup script for the
MySQL daemon, we investigated the error pro-
duced. The error itself was not very informative,
but it did point us to a log file, which indicated
that one of our database tables may have been
corrupted. A quick Google search on repairing
MySQL tables revealed the program myisamchk.
This successfully repaired the table, but then the
startup script complained about the next table.

After running the program on all of the tables
in the database, we were finally able to start the
MySQL daemon and successfully log in to Wall-
eye. Looking back at this problem, we found
it surprising that the amount of data generated
was large enough to cause significant issues with
the honeywall machine, since we saw only back-
ground noise and test traffic, and no actual at-
tacks. Clearly, for a honeynet that is being used
to collect data for research, even for a relatively
short term project, the issue of where and how
old data should be stored would have to be very
carefully considered.

The simplest way to examine traffic on the
honeynet is to search for connections by date,
time, IP address, and or port from the Walleye
welcome page. The results can either be returned
as a PCAP file or in “Walleye flow view,” the
latter being much easier to interpret. At the be-
ginning of the month of December, however, we
began encountering an error whenever we tried
to see results in Walleye flow view. The error
stated that the month “12” was out of the range
0..11, and indicated a file on the honeywall where
the problem had occurred. An examination of
this file was not enlightening, as it was written
in Perl script, with which we have no experience.
A search of the Bugzilla bug information server
on Honeynet.org produced no results. We tried
running YUM (Yellow-dog Updater, Modified)
again to get the latest updates for the honey-
wall, but the only change we observed was that
the graph of recent activity on the honeywall,
usually displayed on the Walleye welcome page,
was no longer loading correctly. By this time,
we were several days into the month of Decem-
ber, and another search of the Bugzilla server
produced one record. This linked to a possible
solution: change one number in the file on the
honeywall that had been causing problems [5].
We tried this, and sure enough, it solved our
problem. The author of the tip admitted that
he did not know what other effects this change
might have, but we have not as yet observed any
negative repercussions. We did, however, notice

14

that in some cases, Walleye could now recognize
the operating system of our Linux and Windows
honeypots. We are still unsure why this feature
only sometimes works: it does not seem to have
any correlation to the type of connection being
monitored. We also noticed that when we try to
see what packets Snort has dropped using Wall-
eye’s “System Status” feature, we see a message
saying that no packets have been dropped that
day, while checking the same field using the menu
utility does display information on a number of
packets that have been dropped.

Since data control is a very important part of
any honeynet, we wanted to do a quick test of
our ability to control the traffic leaving our hon-
eynet. “Roach Motel mode” allows the honeynet
operator to allow traffic in but prevent any traf-
fic out. We tried a test that involved using ssh
to log in to a honeypot and then ping a machine
outside the honeynet. As expected, this test suc-
ceeded fully in normal mode, but in Roach Motel
mode the user could log in to the honeypot but
the ping command did not succeed. We then
examined the “Emergency Lockdown” feature.
Supposedly, this prevents any traffic in or out of
the honeywall except through the management
interface. We found that turning on this op-
tion did stop an ssh connection in progress to
one of our honeypots, and turning off the op-
tion allowed this connection to resume. Unfor-
tunately, all connections to the management in-
terface also failed to work with the lockdown op-
tion on. This may be an issue unique to our
configuration, since we have our honeypots and
our remote management interface on the same
Class-B network, (the Swarthmore College net-
work), or it may be a problem for any setup.
In either case, it would make a situation where
a honeynet is monitored exclusively through the
remote management interface impossible.

3.3 Linux

The Linux machine was a Dell Precision 330 with
an Intel Pentium 4 processor. We initially had
the machine running RedHat 7.2 with a 2.4.9

Linux kernel. The current version of Sebek for
Linux 2.4 worked with the 2.4.30 kernel. This
posed a problem. We updated the kernel but
then we discovered that this updated kernel was
not completely compatible with the version of
Redhat that we were using. This incompatibil-
ity manifested itself in the system’s inability to
recognize the ethernet card. Since internet con-
nectivity is an essential part of a honeynet, we
decided to install a more recent version of Red-
Hat. We installed RedHat 9, updated to a 2.4.30
kernel, and installed the Sebek module. This ver-
sion of Sebek appears to be functioning correctly:
packets are dropped and logged at the honey-
wall, and examining these packets through the
web interface shows that individual commands
are being recognized.

We were able to get an IP address on this ma-
chine by running dhclient, but we could not ping
anything beyond our honeywall or reach any sites
with a web browser. We determined that this
problem must be due to a setting on the honey-
wall, but we were unable to locate the relevant
field in the menu configuration utility. Then,
when examining the configuration page on the
Walleye web GUI, we found the source of the
problem: the “honeypot public address(es)” field
had been set to the IP of the external NAT mode
interface of the Honeywall, and the honeywall
was not in NAT mode. After entering in the
specific addresses of the honeypots, we were able
to connect to the network beyond our honeywall.

3.4 FreeBSD

The FreeBSD machine was a Dell OptiPlex GXa
with an Intel Pentium 2 processor. We had the
machine running FreeBSD 5.2.1. We loaded the
FreeBSD version of Sebek 3.0.3 onto the ma-
chine, and we have observed packets being sent
out, but they are considered by the honeywall to
be malformed. The current FreeBSD version of
Sebek 3.0.3 is still in testing, so we are not sure
whether there is a problem with the program or
with the way we have it set up. By running
dhclient, we were able to get an IP address on

15

this machine, however, we soon began getting er-
ror messages that this IP address was not unique.
Returning several days later, we found an error
message claiming that the machine’s IP address
was 0.0.0.0 and was already in use. Adding the
IP address the machine had obtained previously
to the /etc/hosts file resolved this problem tem-
porarily, but it soon resurfaced. We attempted
to run dhclient again to obtain a new IP, but
the program seemed to be malfunctioning: it ran
for several minutes without producing any out-
put. At this point, the network problems of our
FreeBSD honeypot are still unresolved.

3.5 Windows

The Windows machine was a Dell Precision 330
with an Intel Pentium 4 processor. The machine
was running Windows XP Professional with no
service packs or updates installed. We loaded the
newly available Windows version of Sebek 3.0.3
onto the machine, and it appeared to be work-
ing. When we tried to connect the machine to
the internet, however, it began to spontaneously
reboot. After a few cycles, it got to the point
where it booted up to the login screen and im-
mediately began booting again. We initially as-
sumed this must be due to a virus, but when
we examined the network traffic, we were unable
to see any connections that may have allowed a
virus to reach the machine. We thus concluded
that the Sebek client itself was causing the com-
puter to malfunction. We reinstalled the operat-
ing system and the Sebek client. This time we
saw only a single spontaneous reboot, and after
that the machine appeared to function normally.
We did see occasional error messages upon lo-
gin, but we were unable to decipher them, as
they were formatted to be sent to Microsoft and
not to be readable on the machine. At this point
we could see that the machine was sending Se-
bek packets in response to typed commands, but
again the honeywall reported that these pack-
ets were malformed. Although this machine did
get an IP address, it also could not connect to
the internet with a web browser until the afore-

mentioned change to the honeywall configuration
(See section 3.3).

4 Conclusion

We have succeeded in building a small honeynet
with one fully functional and two partially func-
tional honeypots. Our Linux honeypot collects
data using the Sebek client and the honeywall
correctly interprets this data. Our Windows
honeypot sends improperly formed Sebek pack-
ets that cannot be decoded by the honeywall.
Our FreeBSD honeypot was previously able to
send malformed Sebek packets, but now has
problems holding a valid IP address. Our hon-
eywall can limit or fully block outgoing traffic as
desired, although a complete system lockdown
seems to also block the management interface.

In doing this project, we discovered that the
creators of the Honeywall Roo package had made
certain assumptions about the knowledge base
that their users would have. Those building a
Honeynet are expected to know how to set up
a network. This may seem obvious, but re-
searchers in a field other than networking, (com-
puter security for example), may have an interest
in setting up a honeynet but no previous experi-
ence with networks. The honeynet configuration
utility also seems to be written for people who
are in control of the network on which they are
placing their new honeynet. Because we were on
Swarthmore College’s campus network, this was
not the case for us, and we had to briefly run
another operating system on our honeywall ma-
chine just to get an IP address. In addition, it is
assumed that those installing Sebek onto a hon-
eypot know how to work with the kernel of that
honeypot’s operating system. Installation onto
the Windows machine was very simple, although
ultimately the installed module did not func-
tion correctly. Getting Sebek onto the FreeBSD
machine involved inserting a kernel module and
stripping the kernel, and this program also did
not work as it should have. The Linux version
of Sebek also required loading in a kernel mod-

16

ule. Because the kernel on the machine we had
was significantly older than the version that the
Sebek module expected, we had to update the
kernel - something we had to learn how to do.
The instructions for installing Sebek on Linux
also mention that the module will be uninstalled
every time the machine reboots unless the mod-
ule is loaded in a startup script. We have never
worked with startup scripts, so this is a task that
has not yet been completed.

We also encountered problems specific to the
honeynet itself. In less than two months, even
with no actual attack traffic being observed, the
honeynet can fill up the directory it uses to store
data. This causes problems with Walleye or any
other program that uses the database of cap-
tured traffic. In some cases, this can even cause
the tables in the honeywall’s MySQL database
to become corrupted. Running the program my-
isamchk can repair these tables, but this takes
a significant amount of time with large tables.
Also, the honeywall’s menu utility command to
clean out the logging directories does not clean
the MySQL database files. If these become large
enough to cause problems even without being
stored in the same directory as other large data
files, some method for cleaning them out man-
ually would have to be found. In view of the
serious problems that large amounts of data can
cause, a honeynet operator should have a loca-
tion to which old data can be transferred for stor-
age and do this transfer frequently.

The Sebek modules for Windows and FreeBSD
produce malformed packets. We are unsure
whether this problem is specific to the way in
which we have the modules configured on our
honeypots or whether it would occur for any con-
figuration. In any case, hopefully the next revi-
sion of the module for each operating system will
include a fix for this bug.

We encountered a problem in the Walleye in-
terface that prevented it from displaying any
traffic for the month of December. This was fixed
by making a slight modification to a Perl script
file on the Honeynet, (See [5]).

Within the “System Status” section of the
Walleye System Administration feature, Snort
alerts fail to show up, even if they have occurred
and are clearly visible via the menu utility on the
the honeywall itself. We have not done a thor-
ough investigation of the other options within
this section, since most of our focus was on get-
ting the basic features of our honeynet up and
working, but this is definitely an area for future
work.

During an “Emergency Lockdown,” the man-
agement interface also appears to be blocked.
We are unsure whether or not this problem is
specific to our setup, (our management interface
is on the same network as the public interface
to our honeynet), but it is an important area for
further exploration, since it affects whether or
not a honeynet can be managed entirely through
remote access.

We recognize that the Honeywall Roo is still a
relatively new technology, and as such will have
many bugs. We hope that this record of our ex-
periences with the software will be helpful both
to other researchers beginning a honeynet exper-
iment of their own and to the developers at the
Honeynet project who are constantly working to
improve the system.

5 Acknowledgements

Thanks to Ken Patton for getting the Honey-
wall installation started and for being an es-
sential team member throughout this project.
Thanks to our sysadimin Jeff Knerr for toler-
ating us, giving us equipment, feeding us candy,
and providing considerable knowledge and assis-
tance. Thanks to the CS97 class for all the help
and moral support. Most of all, thanks to Pro-
fessor Ben Kuperman for inspiring us to try this
project and for providing invaluable help every
step of the way.

17

References

[1] Bill McCarty. The honeynet arms race.
”IEEE Security and Privacy”, pages 79–82,
December 2003.

[2] ”Fabien Pouget and Thorsten Holz”.
A pointillist approach for com-
paring honeypots, 2005. URL
www.honeynet.org/papers/individual/
DIMVA2005_Pouget_Holz.pdf.

[3] Bruce Schneier. The real story of the
rogue rootkit, November 2005. URL
http://www.wired.com/news/privacy/
0,1848,69601,00.html.

[4] Sebek Homepapge. URL http://www.
honeynet.org/tools/sebek/.

[5] Jaime Sotelo. Get an error with
walleye and fixed it, 2005. URL
http://www.securityfocus.com/
archive/119/418383/30/0/threaded.

[6] Lance Spitzner. The Honeynet Project:
Trapping the Hackers. IEEE Security &
Privacy, pages 15–23, April 2003.

[7] ”The Honeynet Project”. URL http://
www.honeynet.org/papers/sebek.pdf.

[8] The Honeynet Project, May 2005. URL
http://www.honeynet.org/papers/
honeynet.

[9] The Honeynet Project. Honeynet
project overview, 2005. URL
http://honeynet.org/speaking/
honeynet_project-3.0.1.ppt.zip.

[10] Nicholas Wever, Vern Paxson, Stuart Stani-
ford, and Robert Cunningham. A taxonomy
of computer worms. WORM, 2003.

[11] Vinod Yegneswaran, Paul Barford, and Jo-
hannes Ullrich. Internet intrusions: Global
characteristics and prevalence. SIGMET-
RICS, 2003.

18

