
Proceedings of the Class of 2006 Senior Conference, pages 1–8,
Computer Science Department, Swarthmore College c©2005

Nectar: A browser-agnostic contextual web annotation tool

Daniel S. Crosta

December 14, 2005

Abstract

Nectar enables users of the MoinMoin collabo-
rative wiki editing environment to conveniently
create and view in-text annotations to wiki doc-
uments without disturbing the underlying doc-
ument. It is designed to facilitate online col-
laboration for traditional classroom learning by
allowing authors to lock documents for editing,
but still solicit comments online. Nectar has an
obvious and easy to learn yet unobtrusive inter-
face, supports arbitrary threaded conversations
started from any annotation, and supports both
contextual and page-level annotations.

1 Introduction

For both large lecture-style classes, and smaller
discussion-oriented ones, the World Wide Web
has proven to be a valuable resource, allowing
both teachers and students to extend learning
beyond the walls of the classroom. Early, pri-
marily commercial work (eg Blackboard [3]) fo-
cused on easing course management for large
classes, with tools like gradebooks, online doc-
ument submission and distribution, and self-
grading quizzes. Recently, focus has begun
to shift toward supporting collaboration among
students in small classes and groups within
larger classes on the web. Most educational

courseware systems now include at least online
discussion forums associated with each class, and
some support collaborative editing environments
(eg Blackboard’s “Team Sites” tool) which allow
users to create web documents quickly, without
being bothered to learn complex markup lan-
gauges.

These tools, however, are not tightly inte-
grated in the online interface, so that discussion
boards and collaborative editing tools are often
a few clicks away, on a different web page. I
believe that for collaborative tools to be widely
adopted, they must be available in all parts of
the online environment. This allows discussion
and collaboration around web documents to take
place in context, as discussion of paper docu-
ments in class takes place with the documents in
front of participants.

One area of active industrial and academic
research hopes to bridge the gap between tra-
ditional in-class and web learning by enabling
students and faculty to create in-text annota-
tions on internet documents. This is usually
called web annotation. In particular, Chong and
Sakauchi [6] report that “students have the ten-
dency to write everything down during a lec-
ture...for fear of missing something important.”
As laptop and tablet computers become more
widespread, it will be possible for students to
have access to prepared lecture notes during the

1

lecture. Web annotation, then, allows students
to make their own notes directly “on” the online
lecture notes, instead of having to keep personal
notes and prepared lecture notes separate, avoid-
ing the “split interface” problem also identified
by Chong and Sakauchi.

Web annotation is not a new idea, and sev-
eral commercial and academic groups have made
preliminary stabs at it. Each implementation
tackles part of the overall goal, with varying de-
grees of sucess. This work attempts to draw to-
gether insights and advances made in the past
eight years, and create an integrated web anno-
tation system for the MoinMoin [12] online col-
laborative Wiki [10] environment. The Wiki en-
vironment, while not specialized for educational
use, is a promising platform nonetheless, as its
flexibility allows for a variety of uses. I believe
that an annotation tool in this environment is
more valuable than one specialized for any par-
ticular existing courseware system, since it need
not be specialized for all the types of documents
one might want to annotate.

2 Related Work

As early as 1997, instructors at Freiburg Univer-
sity identified the need to allow students to make
annotations to online course material. Bacher
et al. [2] describe a case study of moving course
materials for an algorithms and data structures
class to the world wide web. In it, they identify
the need for an analog to marginal notes students
would make on in-class handouts. Additionally,
they identify the need for “annotations at vari-
ous levels,” where notes may refer to either an
entire document, or some paragraph or segment
of text from within the document. This notion
was later termed “idea-level placement.” [5] Un-

fortunately, they do not describe algorithms nor
data structures for dealing with changing under-
lying document text. In this system, notes are
primarily for personal use, though they can be
shared on demand.

Cadiz et al. [4] performed a case study of a
working online annotation system at a business
with over 400 users and over 1,200 documents,
in which they discuss the “orphaning” problem
of notes losing the context to which they origi-
nally refer. To address the problem, they suggest
automatic notification to the note’s author, who
may then choose new context for the note, or de-
termine that it may no longer be relevant to the
document.

The SCHOLION [9] system is a distance-
learning solution for publishing lecture slides.
Students may arbitrarily annotate these slides
for personal or shared use. Additionally, stu-
dents may reply to questions or notes posted
by other students by creating links from anno-
tations to a class discussion board area. It is
unclear whether the discussion thread contains
a reverse link to the original annotation.

Finally, Chong and Sakauchi [6] present the
first in-browser web annotation tool geared to-
ward educational needs. Among their design
goals, they reiterate the study benefits of anno-
tating course materials. They also wish to sup-
port students working in groups either concur-
rently or asynchronously, both for collaborative
projects and group review sessions.

3 Overview and Goals

I believe that a next generation web annotation
system ought to support all of the following fea-
tures, from an end user’s perspective:

2

• Use context when it makes sense. Previous
work [2, 4, 6, 9] has shown that for many
tasks, notes should be created and displayed
in context. If a note refers only to a partic-
ular sentence, that should be made obvious
in both input and display. On the other
hand, some annotations may refer to the
document as a whole (imagine, for exam-
ple, concluding thoughts a professor makes
on a student’s paper). Thus, we have two
annotation types: idea-level and page-level
annotations.

• Annotations are conversations. SCHO-
LION [9] introduced the notion of linking
discussions to annotations. In the Microsoft
Office Web Discussions system discussed in
[4], this idea is taken further, by putting
the conversation in context within the doc-
ument being discussed. Additionally, the
notes should be viewable as conversations
in their own right, with backlinks to the
document which spurred the conversation.
A web annotation system should not im-
pose one interface metaphor or the other on
users; both should be available.

• No learning curve. Using the annotation
system should not be an imposition on the
user, either by requiring the installation or
use of special software (eg a new browser,
plugin, or other software), nor with a clumsy
or unusual interface. Using standardized
web technologies ensures that users will not
be confused by the interface, and has the
added benefit of supporting nearly all users
without any modification to their computer
systems. Nectar requires only a CSS- and
JavaScript-capable web browser, which is
a safe assumption on nearly every com-

puter from which a web annotation system
is likely to be used.

These goals, then, inform the design of the
Nectar system. The most obvious data struc-
ture with which to implement threaded notes is
a tree, in which each branch represents a thread
of conversation. No restrictions are placed on
the branching pattern of the tree. Some notes
may comprise only a single node (if there are no
replies), while others may spawn deeply threaded
discussions, which will take the form of highly
branching or very tall trees. Conceptually, the
document itself forms the root node, of which
each annotation is a child. Replies to annota-
tions form additional leaf nodes, which can be-
come internal nodes when they themselves are
replied to.

Idea-level notes store an additional field in the
root node: the location in the document that the
note references as context. This is used to locate
the idea-level notes in the text when displaying
the document, and also to gather the context for
display alongside the annotation.

4 Implementation Details

The Nectar system is implemented as a set of
plugins to the MoinMoin wiki system. The wiki,
with its emphasis on shared authorship of web
documents, is a solid starting point for develop-
ing a collaborative educational courseware sys-
tem. In addition, MoinMoin handles many of
the details of a multi-user online editing envi-
ronment, such as user authentication and access
control. MoinMoin’s modular design also allows
the wiki formatting markup to be reused within
the annotation plugins.

3

Storage Notes are stored on the web server
as XML documents, with one note per file.
MoinMoin has a separate directory structure for
each page of the wiki, in which Nectar creates
a notes/ subdirectory, so notes are stored, as
well as displayed, contextually. This helps off-
set some of the cost of using the filesystem to
store notes, since it is known exactly which set of
notes apply to any given document. Each file has
a unique filename, generated from the creation
date, type, and title of the annotation it con-
tains. The filename type marker further defrays
the cost of using the filesystem, as notes need not
be read to determine which type of note it con-
tains. The tree structure is a doubly-linked tree,
in which each root and internal note contains
a list of child note filenames, and each internal
and leaf note contains the filename of its parent.
This makes it possible to recursively reconstruct
the entire thread of conversation from any note,
which would be helpful when an internal or leaf
note is found as a result of a search.

Storing each note as a file makes the procedure
for displaying notes with a document simple (list
the notes/ directory) rather than complex (cre-
ating or dealing with a more robust database
system). It does not, however, require signifi-
cant wasted effort to compute note threads, since
identifying root nodes requires only listing the
directory, rather than reading and parsing the
note files themselves. Once the root note is
parsed, all the information necessary to create
the next level of the tree is present in that file.
For this reason, it was only more complex, and
not significantly more efficient, to store notes us-
ing a heirarchy of folders and files to mirror the
tree structure, rather than storing all notes in a
single directory.

Storing notes on the filesystem as XML carries
with it some overhead in space and time which

Figure 1: The note icon indicates the presence of an idea-
level annotation.

may be unsuitable for large deployments. In par-
ticlar, since each note is stored in its own file,
small notes take up more space on disk than they
otherwise might, since the minimum actual file
size in most filesystems is the block size (often
four kilobytes). The average note, on the other
hand, even including the verbose XML wrap-
per, is usually under one kilobyte. In a rela-
tional database, the note would only take up as
much space as its contents and metadata (cre-
ation date, type, context region, etc) require,
and the block size isuse is not encountered since
all database records are typically stored in a
single file. Additionally, searching notes stored
in the filesystem would require opening all the
files and parsing the XML, which is probably
significantly slower than search in a relational
database. Implementing acceleration techniques
(eg indexing note contents) duplicates much of
the effort put into developing database systems.
Nectar’s storage and interface implementations
are kept strictly separate, to facilitate adapt-
ing Nectar to use a more robust storage system,
should this need arise.

Rendering During page rendering, all the
root notes for a page are loaded and parsed. For
each idea-level note, an icon is placed in text at
the end of the referenced area, to indicate that
a note exists. When the user clicks the note
icon (Figure 1), JavaScript [7] running in the
browser modifies the page’s Document Object

4

Figure 2: For idea-level annotations, this box displays
the threaded conversation floating “above” the document
text. The triangle and × icons may be used to collapse
or completely hide the notes, respectively. General anno-
tations are displayed similarly below the document text.

Model (DOM) to “pop up” a box in the same
page to display the notes (Figure 2). Page-level
notes, are displayed at the bottom of the page,
and are always present when viewing the page.
Both idea- and page-level notes are displayed
with a collapsable, threaded view, so that the
user may choose which notes and replies to view
at any given time.

Creating Notes To create a note, the user has
several options. To create new page-level notes,
the user fills out a form at the bottom of the
page, prompting for a title and comment about
the page. Creating an idea-level note is as sim-
ple as selecting a portion of the document and
hitting the “n” key (for new or note, whichever
is easier to remember). When a user does so,
JavaScript again modifies the DOM to pop up a
form similar to that of a page-level annotation,
which the user may fill out to create a new idea-
level note. The form also displays the text the
user selected, for verification (Figure 3). The
forms are submitted to the webserver, which up-

Figure 3: To create new annotations, the user is presented
with this prompt for information. The form for creating
a new general note is similar, but lacks the “Context”
display area.

dates the note tree data structures, and then re-
displays the page to the user.

Detecting the range of text a user selects is ac-
complished through a bit of JavaScript and CSS
[14] trickery. At page render time, the follow-
ing snippet of HTML code is inserted into the
middle of each word in the document:

 nw N

where N is a running word count in the docu-
ment. Ordinarily, all the text in the span, that
is, the nw N would be displayed, but the CSS
stylesheet loaded for the page disables this dis-
play. However, since the markers are part of
the page text, the JavaScript getSelection()
method used to find what text the user has se-
lected will contian them. Special care is taken
when inserting the invisible markers not to in-

5

validate the XHTML [15] structure of the docu-
ment, so that it displays properly in all browsers.

A regular expression is used to parse out the
first and last markers in the selected text, and
these are sent to the server along with the user’s
form submission. Since the markers are inserted
into the middle of each word, the first and last
markers are the word indices of the first and last
words, respectively, to be more than half selected
by the user. A little additional parsing is re-
quired to handle single-letter words, but this is
straight-forward and not prone to mistakes.

This hidden marker system is not without
costs, though. Since the marker itself is signifi-
cantly longer than the average word length, for
long documents (where the length of the docu-
ment text outweighs the static overhead of wiki
headers), the hidden markers may add as much
as five to six times more data to transfer. Addi-
tionally, the markers are visible in the document
source, which may be undesirable to some users.
Unfortunately, this is the only system likely to
work across the diversity of web browsers cur-
rently in use. There are several possible solu-
tions to these problems, discussed in detail in
Section 5. To decrease overhead, if a particu-
lar user does not have permission to annotate a
given document (permissions in MoinMoin docu-
ments are set by document editors, in the form of
access control lists), none of the hidden markers
are sent to the user’s computer, nor does the in-
terface for adding annotations (by highlighting)
appear.

5 Future Work

The problem of changing underlying documents,
identified earlier by [2, 4, 6], remains to be
solved. Though Nectar currently does not imple-

ment a solution, MoinMoin implements a form of
version control similar to that provided by CVS
[8]. In particular, changed portions of the doc-
ument can be identified between any two revi-
sions. With this information, it may be possible
to preserve many annotations in changing docu-
ments by updating the context markers accord-
ing to how the document changed. It may also
be possible, though more complex and expensive,
to use language processing techniques to relocate
annotations with a high degree of success based
on the contents of the document itself. As a
fallback, users should be notified when the doc-
ument is changed, as suggested in Cadiz et al., so
that they may update or invalidate their anno-
tations as appropriate. Currently, Nectar makes
the simplifying assumption that documents do
not change, even though this is not realistic.

Another major problem, which seems specific
to Nectar, is the extra overhead of the hid-
den markers required for idea-level annotations.
Some existing systems [4] allow annotations only
at predefined intervals, eg the end of each sen-
tence or paragraph. I believe that word-level
granularity or finer is necessary to create a useful
analog to pen-and-paper annotation. Another
possible solution is to rely on JavaScript to in-
sert the hidden markers in the plain text after
it is delivered to the browser. However, this re-
quires a consistent implementation of regular ex-
pressions in all browsers, which has not been the
case in my experience. Finally, the extra over-
head of the hidden markers may become insignif-
icant even in long documents as high bandwidth
internet access continues to expand.

Other features that might be added to Nectar
are different interaction modes with the annota-
tions. In particular, further integration of the
discussion metaphor with the annotations would
be ideal. Users should be able to browse anno-

6

tations either through the document annotation
interface Nectar currently implements, or a “fo-
rums” view, where annotations are presented as
a list of conversations about a wiki page, with ap-
propriate backlinks to the original document. A
feature commonly found in web forums is search,
which also makes sense for annotations. Both of
these features should be straightforward to im-
plement in future versions of Nectar.

6 Post-Mortem Reflections

When I began this project, I wanted to recre-
ate an interface similar to Microsoft Word’s [11]
“track changes” interface. Unfortunately, the di-
versity of browsers, all implementing different
subsets of different interfaces and technologies,
and none of which are geared toward design-
ing interactive user applications, makes this goal
nearly unattainable. I ended up doing the lion’s
share of the work on the server side, for the
goal of consistency between browsers and ease
of implementation. It is, in many cases, possible
to create fully cross-browser JavaScript applica-
tions with advanced functionality, but in most
cases this requires creating a meta-API where
each function your application calls is a wrapper
which first detects browser capabilities, and then
decides how best to go about the task. Develop-
ing such a meta-API requires time I did not have
this semester, so at this point, Nectar is only
tested and known to work with Mozilla Firefox
[13] and Apple’s Safari [1]. In future versions,
I expect that more of the work can be done on
the client side, easing the load on the server and
increasing Nectar’s scalability.

When comes to the actual code of Nectar
itself, I am now beginning to understand the
“write it once, throw it away, write it again”

mentality in software design. There were some
challenges I didn’t see ahead of time, in particu-
lar, the need for inserting hidden markers in the
text. I thought that it was generally possible to
determine which DOM nodes were selected by
the user, or in which DOM nodes the selection
was, which ought to have been enough to fig-
ure out selection from the plain document text.
This stumbling block alone was enough to delay
Nectar by about a week as I struggled first to
find out how it was possible (“it must be pos-
sible, right?”), and then to figure the best way
around it. There were a few ways to insert the
hidden markers, and it took some time to de-
cide on the middle-of-the-word strategy. This
seemed to represent the best mix of minimizing
overhead while still allowing flexible and useful
annotation.

I also found the MoinMoin API a little messy
and undocumented, and in particular often got
frustrated at the “TODO: update this com-
ment for 1.3.5” type comments strewn liberally
throughout the code. I think free and open
source software is a fanstastic idea, and the avail-
ability of MoinMoin’s source code made this
project possible, but I wonder if it is possible in
such an organically grown project as MoinMoin
to maintain strict standards of coding, testing
and documentation.

Finally, I wish that neither of the above had
been problems so that I could have had time to
tackle what I see as the major advance of Nectar
among web annotation systems, the “forums” in-
terface I mentioned in Section 3. It has always
been a priority for me, both in this project and in
other applications I have made, not to try to im-
pose interaction methods on the user, or at least
to avoid doing so as much as possible. In addi-
tion to adding interface flexibility, I had hoped
that the forums interface would allow users to

7

discover new wiki pages by browsing what was
being said about them. It has certainly been
my experience in education that the discussion
around and about class readings, for instance,
is both more in-depth and more comprehensible
than the primary document; I suspect this is true
for other fields, as well.

References

[1] Apple Computer, Inc. Apple - Mac OS X -
Safari RSS. URL http://www.apple.com/
macosx/features/safari/.

[2] C. Bacher, R. Müller, T. Ottmann, and
M. Will. Open hypermedia educational en-
vironments: A feasible approach to over-
come some difficulties. Technical Report 91,
Freiburg University, 9, 1997.

[3] Blackboard, Inc. The Blackboard Academic
Suite. URL http://www.blackboard.com/
products/as.

[4] J. J. Cadiz, Anop Gupta, and Jonathan
Grudin. Using web annotations for asyn-
chronous collaboration around documents.
In Proceedings of the 2000 ACM conference
on Computer supported cooperative work,
2000.

[5] Laurie Causton. Web-based tools for docu-
ment annotation, 1999. URL http://www.
elpub.org/html/tool annot.html. Docu-
ment no longer available, cited in [6].

[6] Ng S. T. Chong and Masao Sakauchi. Cre-
ating and sharing web notes via a stan-
dard browser. ACM SIGCUE Outlook, 27
(3), September 2001.

[7] ECMA International. Stanrard
ECMA-262: ECMAScript Language
Reference, December 1999. URL
http://www.ecma-international.org/
publications/ECMA\ ST/Ecma-262.pdf.

[8] Free Software Foundation. CVS - Open
Source Version Control. URL http://www.
nongnu.org/cvs/.

[9] Barbara Froshcauer, Chris Stary, Michael
Ellmer, Thomas Pilsl, Wolfgang Ortner,
and Alexandra Totter. Scholion: Scaleable
technologies for telelearning. In Proceed-
ings of the 2000 ACM symposium on Ap-
plied computing, volume 1, 2000.

[10] Bo Leuf and Ward Cunningham. The Wiki
Way: Collaboration and Sharing on the In-
ternet. Addison-Wesley Professional, April
2001.

[11] Microsoft Corporation. Microsoft Office
Online Home Page. URL http://office.
microsoft.com/en-us/default.aspx.

[12] MoinMoin. URL http://moinmoin.
wikiwikiweb.de/MoinMoin.

[13] The Mozilla Corporation. Firefox - Redis-
cover the Web. URL http://www.mozilla.
com/firefox/.

[14] World Wide Web Consortium. Cascading
Style Sheets, level 2 revision 1 CSS 2.1 Spec-
ification, June 2005. URL http://www.w3.
org/TR/CSS21/.

[15] World Wide Web Consortium. XHTML 2.0,
May 2005. URL http://www.w3.org/TR/
2005/WD-xhtml2-20050527/.

8

