
Computer Science Department
CPSC 097

Class of 2006
Senior Conference

on Intrusion Detection

Proceedings of the Conference

Fall 2005
Swarthmore College

Swarthmore, Pennsylvania, USA



Order copies of this proceedings from:

Computer Science Department
Swarthmore College
500 College Avenue
Swarthmore, PA 19081
USA
Tel: +1-610-328-8272
Fax: +1-610-328-8606
kuperman@cs.swarthmore.edu

ii



Introduction

About CPSC 097: Senior Conference

This course provides honors and course majors an opportunity to delve more deeply into a particular
topic in computer science, synthesizing material from previous courses. Topics have included advanced
algorithms, networking, evolutionary computation, complexity, encryption and compression, parallel
processing, and natural language processing. CPSC 097 is the usual method used to satisfy the
comprehensive requirement for a computer science major.

During the 2005-2006 academic year, the Senior Conference was led by Benjamin A. Kuperman in the
area of Intrusion Detection.

Computer Science Department

Charles Kelemen, Edward Hicks Magill Professor and Chair
Lisa Meeden, Associate Professor
Tia Newhall, Associate Professor
Richard Wicentowski, Assistant Professor
Benjamin Kuperman, Visiting Assistant Professor

Program Committee Members

Daniel Crosta
Heather Jones
Ethan Jucovy
Benjamin Kuperman
Connie Li
Alan McAvinney
Taufik Parsioan
Kenneth Patton
Javier Prado
Benjamin Turner

iii





Table of Contents

Nectar: A Browser-Agnostic Contextual Web Annotation Tool
Dan Crosta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Building a Heterogeneous Honeynet
Javier Prado and Heather Jones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Profiling Honeynet Attackers
Connie Li and Taufik Parsioan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Building a Neural Network for Misuse Detection
Alan McAvinney and Ben Turner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Rabbitstew: A Robot Simulator with Variable Morphologies
Ethan G. Jucovy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Sweeter Honeynets
Kenneth Patton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

v





Conference Program

Tuesday, December 6, 2005

2:45-3:15 Nectar: A Browser-Agnostic Contextual Web Annotation Tool
Dan Crosta

3:15-3:45 Building a Heterogeneous Honeynet
Javier Prado and Heather Jones

3:45-4:15 Profiling Honeynet Attackers
Connie Li and Taufik Parsioan

Thursday, December 8, 2005

2:45-3:15 Building a Neural Network for Misuse Detection
Alan McAvinney and Ben Turner

3:15-3:45 Rabbitstew: A Robot Simulator with Variable Morphologies
Ethan G. Jucovy

3:45-4:15 Sweeter Honeynets
Kenneth Patton

vii





Proceedings of the Class of 2006 Senior Conference, pages 1–8,
Computer Science Department, Swarthmore College c©2005

Nectar: A browser-agnostic contextual web annotation tool

Daniel S. Crosta

December 14, 2005

Abstract

Nectar enables users of the MoinMoin collabo-
rative wiki editing environment to conveniently
create and view in-text annotations to wiki doc-
uments without disturbing the underlying doc-
ument. It is designed to facilitate online col-
laboration for traditional classroom learning by
allowing authors to lock documents for editing,
but still solicit comments online. Nectar has an
obvious and easy to learn yet unobtrusive inter-
face, supports arbitrary threaded conversations
started from any annotation, and supports both
contextual and page-level annotations.

1 Introduction

For both large lecture-style classes, and smaller
discussion-oriented ones, the World Wide Web
has proven to be a valuable resource, allowing
both teachers and students to extend learning
beyond the walls of the classroom. Early, pri-
marily commercial work (eg Blackboard [3]) fo-
cused on easing course management for large
classes, with tools like gradebooks, online doc-
ument submission and distribution, and self-
grading quizzes. Recently, focus has begun
to shift toward supporting collaboration among
students in small classes and groups within
larger classes on the web. Most educational

courseware systems now include at least online
discussion forums associated with each class, and
some support collaborative editing environments
(eg Blackboard’s “Team Sites” tool) which allow
users to create web documents quickly, without
being bothered to learn complex markup lan-
gauges.

These tools, however, are not tightly inte-
grated in the online interface, so that discussion
boards and collaborative editing tools are often
a few clicks away, on a different web page. I
believe that for collaborative tools to be widely
adopted, they must be available in all parts of
the online environment. This allows discussion
and collaboration around web documents to take
place in context, as discussion of paper docu-
ments in class takes place with the documents in
front of participants.

One area of active industrial and academic
research hopes to bridge the gap between tra-
ditional in-class and web learning by enabling
students and faculty to create in-text annota-
tions on internet documents. This is usually
called web annotation. In particular, Chong and
Sakauchi [6] report that “students have the ten-
dency to write everything down during a lec-
ture...for fear of missing something important.”
As laptop and tablet computers become more
widespread, it will be possible for students to
have access to prepared lecture notes during the

1



lecture. Web annotation, then, allows students
to make their own notes directly “on” the online
lecture notes, instead of having to keep personal
notes and prepared lecture notes separate, avoid-
ing the “split interface” problem also identified
by Chong and Sakauchi.

Web annotation is not a new idea, and sev-
eral commercial and academic groups have made
preliminary stabs at it. Each implementation
tackles part of the overall goal, with varying de-
grees of sucess. This work attempts to draw to-
gether insights and advances made in the past
eight years, and create an integrated web anno-
tation system for the MoinMoin [12] online col-
laborative Wiki [10] environment. The Wiki en-
vironment, while not specialized for educational
use, is a promising platform nonetheless, as its
flexibility allows for a variety of uses. I believe
that an annotation tool in this environment is
more valuable than one specialized for any par-
ticular existing courseware system, since it need
not be specialized for all the types of documents
one might want to annotate.

2 Related Work

As early as 1997, instructors at Freiburg Univer-
sity identified the need to allow students to make
annotations to online course material. Bacher
et al. [2] describe a case study of moving course
materials for an algorithms and data structures
class to the world wide web. In it, they identify
the need for an analog to marginal notes students
would make on in-class handouts. Additionally,
they identify the need for “annotations at vari-
ous levels,” where notes may refer to either an
entire document, or some paragraph or segment
of text from within the document. This notion
was later termed “idea-level placement.” [5] Un-

fortunately, they do not describe algorithms nor
data structures for dealing with changing under-
lying document text. In this system, notes are
primarily for personal use, though they can be
shared on demand.

Cadiz et al. [4] performed a case study of a
working online annotation system at a business
with over 400 users and over 1,200 documents,
in which they discuss the “orphaning” problem
of notes losing the context to which they origi-
nally refer. To address the problem, they suggest
automatic notification to the note’s author, who
may then choose new context for the note, or de-
termine that it may no longer be relevant to the
document.

The SCHOLION [9] system is a distance-
learning solution for publishing lecture slides.
Students may arbitrarily annotate these slides
for personal or shared use. Additionally, stu-
dents may reply to questions or notes posted
by other students by creating links from anno-
tations to a class discussion board area. It is
unclear whether the discussion thread contains
a reverse link to the original annotation.

Finally, Chong and Sakauchi [6] present the
first in-browser web annotation tool geared to-
ward educational needs. Among their design
goals, they reiterate the study benefits of anno-
tating course materials. They also wish to sup-
port students working in groups either concur-
rently or asynchronously, both for collaborative
projects and group review sessions.

3 Overview and Goals

I believe that a next generation web annotation
system ought to support all of the following fea-
tures, from an end user’s perspective:

2



• Use context when it makes sense. Previous
work [2, 4, 6, 9] has shown that for many
tasks, notes should be created and displayed
in context. If a note refers only to a partic-
ular sentence, that should be made obvious
in both input and display. On the other
hand, some annotations may refer to the
document as a whole (imagine, for exam-
ple, concluding thoughts a professor makes
on a student’s paper). Thus, we have two
annotation types: idea-level and page-level
annotations.

• Annotations are conversations. SCHO-
LION [9] introduced the notion of linking
discussions to annotations. In the Microsoft
Office Web Discussions system discussed in
[4], this idea is taken further, by putting
the conversation in context within the doc-
ument being discussed. Additionally, the
notes should be viewable as conversations
in their own right, with backlinks to the
document which spurred the conversation.
A web annotation system should not im-
pose one interface metaphor or the other on
users; both should be available.

• No learning curve. Using the annotation
system should not be an imposition on the
user, either by requiring the installation or
use of special software (eg a new browser,
plugin, or other software), nor with a clumsy
or unusual interface. Using standardized
web technologies ensures that users will not
be confused by the interface, and has the
added benefit of supporting nearly all users
without any modification to their computer
systems. Nectar requires only a CSS- and
JavaScript-capable web browser, which is
a safe assumption on nearly every com-

puter from which a web annotation system
is likely to be used.

These goals, then, inform the design of the
Nectar system. The most obvious data struc-
ture with which to implement threaded notes is
a tree, in which each branch represents a thread
of conversation. No restrictions are placed on
the branching pattern of the tree. Some notes
may comprise only a single node (if there are no
replies), while others may spawn deeply threaded
discussions, which will take the form of highly
branching or very tall trees. Conceptually, the
document itself forms the root node, of which
each annotation is a child. Replies to annota-
tions form additional leaf nodes, which can be-
come internal nodes when they themselves are
replied to.

Idea-level notes store an additional field in the
root node: the location in the document that the
note references as context. This is used to locate
the idea-level notes in the text when displaying
the document, and also to gather the context for
display alongside the annotation.

4 Implementation Details

The Nectar system is implemented as a set of
plugins to the MoinMoin wiki system. The wiki,
with its emphasis on shared authorship of web
documents, is a solid starting point for develop-
ing a collaborative educational courseware sys-
tem. In addition, MoinMoin handles many of
the details of a multi-user online editing envi-
ronment, such as user authentication and access
control. MoinMoin’s modular design also allows
the wiki formatting markup to be reused within
the annotation plugins.

3



Storage Notes are stored on the web server
as XML documents, with one note per file.
MoinMoin has a separate directory structure for
each page of the wiki, in which Nectar creates
a notes/ subdirectory, so notes are stored, as
well as displayed, contextually. This helps off-
set some of the cost of using the filesystem to
store notes, since it is known exactly which set of
notes apply to any given document. Each file has
a unique filename, generated from the creation
date, type, and title of the annotation it con-
tains. The filename type marker further defrays
the cost of using the filesystem, as notes need not
be read to determine which type of note it con-
tains. The tree structure is a doubly-linked tree,
in which each root and internal note contains
a list of child note filenames, and each internal
and leaf note contains the filename of its parent.
This makes it possible to recursively reconstruct
the entire thread of conversation from any note,
which would be helpful when an internal or leaf
note is found as a result of a search.

Storing each note as a file makes the procedure
for displaying notes with a document simple (list
the notes/ directory) rather than complex (cre-
ating or dealing with a more robust database
system). It does not, however, require signifi-
cant wasted effort to compute note threads, since
identifying root nodes requires only listing the
directory, rather than reading and parsing the
note files themselves. Once the root note is
parsed, all the information necessary to create
the next level of the tree is present in that file.
For this reason, it was only more complex, and
not significantly more efficient, to store notes us-
ing a heirarchy of folders and files to mirror the
tree structure, rather than storing all notes in a
single directory.

Storing notes on the filesystem as XML carries
with it some overhead in space and time which

Figure 1: The note icon indicates the presence of an idea-
level annotation.

may be unsuitable for large deployments. In par-
ticlar, since each note is stored in its own file,
small notes take up more space on disk than they
otherwise might, since the minimum actual file
size in most filesystems is the block size (often
four kilobytes). The average note, on the other
hand, even including the verbose XML wrap-
per, is usually under one kilobyte. In a rela-
tional database, the note would only take up as
much space as its contents and metadata (cre-
ation date, type, context region, etc) require,
and the block size isuse is not encountered since
all database records are typically stored in a
single file. Additionally, searching notes stored
in the filesystem would require opening all the
files and parsing the XML, which is probably
significantly slower than search in a relational
database. Implementing acceleration techniques
(eg indexing note contents) duplicates much of
the effort put into developing database systems.
Nectar’s storage and interface implementations
are kept strictly separate, to facilitate adapt-
ing Nectar to use a more robust storage system,
should this need arise.

Rendering During page rendering, all the
root notes for a page are loaded and parsed. For
each idea-level note, an icon is placed in text at
the end of the referenced area, to indicate that
a note exists. When the user clicks the note
icon (Figure 1), JavaScript [7] running in the
browser modifies the page’s Document Object

4



Figure 2: For idea-level annotations, this box displays
the threaded conversation floating “above” the document
text. The triangle and × icons may be used to collapse
or completely hide the notes, respectively. General anno-
tations are displayed similarly below the document text.

Model (DOM) to “pop up” a box in the same
page to display the notes (Figure 2). Page-level
notes, are displayed at the bottom of the page,
and are always present when viewing the page.
Both idea- and page-level notes are displayed
with a collapsable, threaded view, so that the
user may choose which notes and replies to view
at any given time.

Creating Notes To create a note, the user has
several options. To create new page-level notes,
the user fills out a form at the bottom of the
page, prompting for a title and comment about
the page. Creating an idea-level note is as sim-
ple as selecting a portion of the document and
hitting the “n” key (for new or note, whichever
is easier to remember). When a user does so,
JavaScript again modifies the DOM to pop up a
form similar to that of a page-level annotation,
which the user may fill out to create a new idea-
level note. The form also displays the text the
user selected, for verification (Figure 3). The
forms are submitted to the webserver, which up-

Figure 3: To create new annotations, the user is presented
with this prompt for information. The form for creating
a new general note is similar, but lacks the “Context”
display area.

dates the note tree data structures, and then re-
displays the page to the user.

Detecting the range of text a user selects is ac-
complished through a bit of JavaScript and CSS
[14] trickery. At page render time, the follow-
ing snippet of HTML code is inserted into the
middle of each word in the document:

<span class="nw"> nw N </span>

where N is a running word count in the docu-
ment. Ordinarily, all the text in the span, that
is, the nw N would be displayed, but the CSS
stylesheet loaded for the page disables this dis-
play. However, since the markers are part of
the page text, the JavaScript getSelection()
method used to find what text the user has se-
lected will contian them. Special care is taken
when inserting the invisible markers not to in-

5



validate the XHTML [15] structure of the docu-
ment, so that it displays properly in all browsers.

A regular expression is used to parse out the
first and last markers in the selected text, and
these are sent to the server along with the user’s
form submission. Since the markers are inserted
into the middle of each word, the first and last
markers are the word indices of the first and last
words, respectively, to be more than half selected
by the user. A little additional parsing is re-
quired to handle single-letter words, but this is
straight-forward and not prone to mistakes.

This hidden marker system is not without
costs, though. Since the marker itself is signifi-
cantly longer than the average word length, for
long documents (where the length of the docu-
ment text outweighs the static overhead of wiki
headers), the hidden markers may add as much
as five to six times more data to transfer. Addi-
tionally, the markers are visible in the document
source, which may be undesirable to some users.
Unfortunately, this is the only system likely to
work across the diversity of web browsers cur-
rently in use. There are several possible solu-
tions to these problems, discussed in detail in
Section 5. To decrease overhead, if a particu-
lar user does not have permission to annotate a
given document (permissions in MoinMoin docu-
ments are set by document editors, in the form of
access control lists), none of the hidden markers
are sent to the user’s computer, nor does the in-
terface for adding annotations (by highlighting)
appear.

5 Future Work

The problem of changing underlying documents,
identified earlier by [2, 4, 6], remains to be
solved. Though Nectar currently does not imple-

ment a solution, MoinMoin implements a form of
version control similar to that provided by CVS
[8]. In particular, changed portions of the doc-
ument can be identified between any two revi-
sions. With this information, it may be possible
to preserve many annotations in changing docu-
ments by updating the context markers accord-
ing to how the document changed. It may also
be possible, though more complex and expensive,
to use language processing techniques to relocate
annotations with a high degree of success based
on the contents of the document itself. As a
fallback, users should be notified when the doc-
ument is changed, as suggested in Cadiz et al., so
that they may update or invalidate their anno-
tations as appropriate. Currently, Nectar makes
the simplifying assumption that documents do
not change, even though this is not realistic.

Another major problem, which seems specific
to Nectar, is the extra overhead of the hid-
den markers required for idea-level annotations.
Some existing systems [4] allow annotations only
at predefined intervals, eg the end of each sen-
tence or paragraph. I believe that word-level
granularity or finer is necessary to create a useful
analog to pen-and-paper annotation. Another
possible solution is to rely on JavaScript to in-
sert the hidden markers in the plain text after
it is delivered to the browser. However, this re-
quires a consistent implementation of regular ex-
pressions in all browsers, which has not been the
case in my experience. Finally, the extra over-
head of the hidden markers may become insignif-
icant even in long documents as high bandwidth
internet access continues to expand.

Other features that might be added to Nectar
are different interaction modes with the annota-
tions. In particular, further integration of the
discussion metaphor with the annotations would
be ideal. Users should be able to browse anno-

6



tations either through the document annotation
interface Nectar currently implements, or a “fo-
rums” view, where annotations are presented as
a list of conversations about a wiki page, with ap-
propriate backlinks to the original document. A
feature commonly found in web forums is search,
which also makes sense for annotations. Both of
these features should be straightforward to im-
plement in future versions of Nectar.

6 Post-Mortem Reflections

When I began this project, I wanted to recre-
ate an interface similar to Microsoft Word’s [11]
“track changes” interface. Unfortunately, the di-
versity of browsers, all implementing different
subsets of different interfaces and technologies,
and none of which are geared toward design-
ing interactive user applications, makes this goal
nearly unattainable. I ended up doing the lion’s
share of the work on the server side, for the
goal of consistency between browsers and ease
of implementation. It is, in many cases, possible
to create fully cross-browser JavaScript applica-
tions with advanced functionality, but in most
cases this requires creating a meta-API where
each function your application calls is a wrapper
which first detects browser capabilities, and then
decides how best to go about the task. Develop-
ing such a meta-API requires time I did not have
this semester, so at this point, Nectar is only
tested and known to work with Mozilla Firefox
[13] and Apple’s Safari [1]. In future versions,
I expect that more of the work can be done on
the client side, easing the load on the server and
increasing Nectar’s scalability.

When comes to the actual code of Nectar
itself, I am now beginning to understand the
“write it once, throw it away, write it again”

mentality in software design. There were some
challenges I didn’t see ahead of time, in particu-
lar, the need for inserting hidden markers in the
text. I thought that it was generally possible to
determine which DOM nodes were selected by
the user, or in which DOM nodes the selection
was, which ought to have been enough to fig-
ure out selection from the plain document text.
This stumbling block alone was enough to delay
Nectar by about a week as I struggled first to
find out how it was possible (“it must be pos-
sible, right?”), and then to figure the best way
around it. There were a few ways to insert the
hidden markers, and it took some time to de-
cide on the middle-of-the-word strategy. This
seemed to represent the best mix of minimizing
overhead while still allowing flexible and useful
annotation.

I also found the MoinMoin API a little messy
and undocumented, and in particular often got
frustrated at the “TODO: update this com-
ment for 1.3.5” type comments strewn liberally
throughout the code. I think free and open
source software is a fanstastic idea, and the avail-
ability of MoinMoin’s source code made this
project possible, but I wonder if it is possible in
such an organically grown project as MoinMoin
to maintain strict standards of coding, testing
and documentation.

Finally, I wish that neither of the above had
been problems so that I could have had time to
tackle what I see as the major advance of Nectar
among web annotation systems, the “forums” in-
terface I mentioned in Section 3. It has always
been a priority for me, both in this project and in
other applications I have made, not to try to im-
pose interaction methods on the user, or at least
to avoid doing so as much as possible. In addi-
tion to adding interface flexibility, I had hoped
that the forums interface would allow users to

7



discover new wiki pages by browsing what was
being said about them. It has certainly been
my experience in education that the discussion
around and about class readings, for instance,
is both more in-depth and more comprehensible
than the primary document; I suspect this is true
for other fields, as well.

References

[1] Apple Computer, Inc. Apple - Mac OS X -
Safari RSS. URL http://www.apple.com/
macosx/features/safari/.

[2] C. Bacher, R. Müller, T. Ottmann, and
M. Will. Open hypermedia educational en-
vironments: A feasible approach to over-
come some difficulties. Technical Report 91,
Freiburg University, 9, 1997.

[3] Blackboard, Inc. The Blackboard Academic
Suite. URL http://www.blackboard.com/
products/as.

[4] J. J. Cadiz, Anop Gupta, and Jonathan
Grudin. Using web annotations for asyn-
chronous collaboration around documents.
In Proceedings of the 2000 ACM conference
on Computer supported cooperative work,
2000.

[5] Laurie Causton. Web-based tools for docu-
ment annotation, 1999. URL http://www.
elpub.org/html/tool annot.html. Docu-
ment no longer available, cited in [6].

[6] Ng S. T. Chong and Masao Sakauchi. Cre-
ating and sharing web notes via a stan-
dard browser. ACM SIGCUE Outlook, 27
(3), September 2001.

[7] ECMA International. Stanrard
ECMA-262: ECMAScript Language
Reference, December 1999. URL
http://www.ecma-international.org/
publications/ECMA\ ST/Ecma-262.pdf.

[8] Free Software Foundation. CVS - Open
Source Version Control. URL http://www.
nongnu.org/cvs/.

[9] Barbara Froshcauer, Chris Stary, Michael
Ellmer, Thomas Pilsl, Wolfgang Ortner,
and Alexandra Totter. Scholion: Scaleable
technologies for telelearning. In Proceed-
ings of the 2000 ACM symposium on Ap-
plied computing, volume 1, 2000.

[10] Bo Leuf and Ward Cunningham. The Wiki
Way: Collaboration and Sharing on the In-
ternet. Addison-Wesley Professional, April
2001.

[11] Microsoft Corporation. Microsoft Office
Online Home Page. URL http://office.
microsoft.com/en-us/default.aspx.

[12] MoinMoin. URL http://moinmoin.
wikiwikiweb.de/MoinMoin.

[13] The Mozilla Corporation. Firefox - Redis-
cover the Web. URL http://www.mozilla.
com/firefox/.

[14] World Wide Web Consortium. Cascading
Style Sheets, level 2 revision 1 CSS 2.1 Spec-
ification, June 2005. URL http://www.w3.
org/TR/CSS21/.

[15] World Wide Web Consortium. XHTML 2.0,
May 2005. URL http://www.w3.org/TR/
2005/WD-xhtml2-20050527/.

8



Proceedings of the Class of 2006 Senior Conference, pages 9–18,
Computer Science Department, Swarthmore College c©2005

Building a Heterogeneous Honeynet

Javier Prado
jprado1@swarthmore.edu

Heather Jones
hjones2@swarthmore.edu

December 13, 2005

Abstract

A small network of honeypots, each running a
different operating system, was constructed in-
side the campus network at Swarthmore Col-
lege. Although preexisting honeynet software
was used, quite a few difficulties were encoun-
tered. These problems, and solutions to those
that were solved, are presented in this paper.

1 Introduction

It is critical for any misuse intrusion detection
system to know how to be able to detect the lat-
est attacks. With new attacks emerging every
day, this can be quite difficult. One tool devel-
oped to assist in keeping pace with the attackers
is a honeypot: a computer with no purpose other
than to be attacked and collect data on the at-
tacks it suffers. A honeynet is an entire network
used in this way. Because so many of the attacks
in use today involve an intruder gaining control
of a computer and then using it to attack other
machines, a honeynet operator must make sure
that his honeynet cannot only collect data effec-
tively, but can also stop his machines from being
used to launch further attacks. This makes the
task of building a honeynet from scratch very dif-
ficult. Fortunately, there are a number of tools
already available to capture and control traffic on
a honeynet. The most important contribution,
perhaps, is the Honeynet Project’s Honeywall
Roo, which combines several honeynet technolo-
gies onto a bootable CDROM, including the net-
work packet sniffer Snort, a server for the host-

based data capture module Sebek, the ability to
limit traffic from the honeynet, and a web GUI
for administration and data analysis. The idea
of the Roo CDROM is to make it easy for any
organization to set up its own honeynet.

We set out to build a honeynet using the Hon-
eywall CDROM Roo in order to research the dif-
ferent kinds of attacks that occur on different op-
erating systems. We found, however, that setting
up a honeynet is not as easy as it looks. Some of
our problems were due to bugs in various parts
of the system. Others occurred when we failed
to understand key details about how the system
was supposed to work. While the latter could be
dismissed as due entirely to our inexperience, we
believe they provide valuable information about
what the makers of the CDROM Roo have as-
sumed that their users will know.

First, we will provide some background about
the Honeynet Project, other research on attacks,
and details of how the Honeywall Roo works.
Next, we will discuss the architecture of our hon-
eynet and the problems we encountered with
some of the components of the system. Finally,
we will draw conclusions about what we have
learned from this experience.

2 Background

2.1 Honeypots and Honeynet.org

Beginning in 1999, the Honeynet Project has
been developing and using honeynets to collect
and distribute knowledge about the black-hat
community [6]. The first phase of the project

9



involved testing the idea that data captured
by honeynets could provide useful information
about attacks. In the second phase, which began
in 2002, a second generation of honeynet technol-
ogy (Gen II) was developed to be simpler, more
interactive, safer, and easier to deploy than pre-
vious architectures. The third phase packaged
everything necessary to set up a honeynet onto
a bootable CD-ROM. This has made it much eas-
ier for organizations around the world to set up
their own honeynets. The fourth phase involves
the development of a centralized data collection
system. As the project has progressed, it has
expanded to become the Honeynet Research Al-
liance, with 20 member groups around the globe.

We are using the Honeynet Project’s Gen III
technology to implement our honeynet. Signif-
icant improvements made between Gen II and
Gen III include a more automated installation,
a web GUI for administration, and a capability
for automatic updates [9].

A similar experiment to the one we initially
set out to do here was performed as a part of
the Honeynet Project. They compared data
from Windows, Linux, Solaris and OpenBSD
machines, and discovered that each operating
system attracted different kinds of attacks. On
Windows systems, they saw worms and auto-
mated attacks. On Linux systems, they saw at-
tacks originating mainly from Eastern Europe,
especially from Romania, that exploited known
vulnerabilities or employed automated tools. On
Solaris and OpenBSD, they saw more advanced
or interesting attacks [6].

2.2 Related Work

In a 2005 paper entitled “A Pointillist Approach
for Comparing Honeypots,” Pouget and Holz ex-
amined how a three-machine honeynet running
Windows 98, Windows NT Server and Redhat
Linux 7.3 server could be used to make a low-
interaction honeypot emulating these three ma-
chines more believable [2]. They classified at-
tacks into three categories: Type I attacks tar-
geted only one machine, Type II attacks targeted

two out of three machines, and Type III attacks
targeted all three machines. Approximately 60
percent of the attacks they recorded were of Type
I, and 35 percent were of Type III. Of the few
Type II attacks, 88 percent were judged to be
Type III attacks for which the message to one of
the machines had been lost, 9 percent were due
to scanning attacks that targeted every other IP
address, and 3 percent were believed to be at-
tacks on the two Windows machines only.

Yegneswaran, Barford and Ullrich used data
from 1600 networks around the world to study
the global characteristics of internet attacks[11].
In addition to analyzing the volume and distri-
bution of attacks in their 2003 paper “Internet
Intrusions: Global Characteristics and Preva-
lence,” they presented a classification of four
scan types. A vertical scan examines several dif-
ferent ports on a single machine. A horizontal
scan examines the same port on several differ-
ent machines. A coordinated scan examines the
same port on the machines within a subnet and
originates from several sources. A stealth scan
is a horizontal or vertical scan executed with a
very low frequency in order to avoid detection.

Weaver, et al. develop a taxonomy of com-
puter worms based on method of target dis-
covery, carrier, activation, payload, and at-
tacker motivation in their 2003 paper on the
subject[10]. Following this taxonomy, target dis-
covery techniques are scanning, pre-generated
target lists, external target lists, internal target
lists and passive discovery. Carriers include the
worm itself, a second channel through which the
worm completes an initiated infection, and nor-
mal traffic in which the worm embeds itself. A
worm can be activated by a human, by a hu-
man activity, by a scheduled process, or by it-
self. The most common payload for a worm is a
nonexistent or nonfunctional one, although there
are many other possible payloads, including elec-
tronic or physical remote control, damage, or
denial of service. Attackers may be motivated
by experimental curiosity, pride, commercial ad-
vantage, criminal gain, random protest, political
protest, terrorism, or cyber warfare.

10



2.3 Honeynet Details

The Know your Enemy series of documents made
available by the honeynet.org website has proved
to be an invaluable resource. The seminal pa-
per for any honeynet project is the Know your
Enemy: Honeynets paper [8]. This paper gives
a survey of the basic, fundamental concepts of
a honeynet. The two fundamental aspects of a
honeynet as they apply to our project are the
data control concept and the data capture con-
cept. In data control, the key concept is that it
is imperative to circumvent an intruder’s ability
to attack other systems outside of the honeynet
once the intruder has compromised a honeypot
within the honeynet. This responsibility primar-
ily rests on the honeywall’s ability to detect ma-
licious activity on the network and in each of
its honeypots, and then respond in turn to the
threat at hand. The paper makes clear that the
actual implementation of the data control (our
honeywall) is ultimately our decision but the au-
thor does provide some suggestions for our imple-
mentation. Among the suggestions include the
layering of security measures to help obfuscate
the presence of the honeywall and for the hon-
eywall to operate in a fail closed manner where
any failure of one of our components will result
in all network traffic from the honeynet being
terminated [8]. The other fundamental concept
of a honeynet, data capture, concerns the log-
ging and reporting of an intruders activity, ba-
sically the reason why the honeynet exists. For
our project, the two primary elements of data
capture are the Sebek client and the honeywall’s
log of network activity.

Because the main goal of this project was to
get the honeywall to the point where it could
collect useful data, the Sebek client is one of the
fundamental components of our project. Sebek
is a solution to a problem that has faced the hon-
eynet community: how to observe an intruder’s
actions without the intruder knowing that he or
she is being monitored. The paper discussing
this issue [7] shows how simple network monitor-
ing, although a viable solution, is undermined by

an intruder’s ability to use encryption to obfus-
cate his or her activity. The only way to capture
unencrypted data is to catch it before it is en-
crypted (i.e., before the attacker sends it onto the
network), or after it is decrypted (i.e., once it has
reached its final destination). Thus, Sebek pro-
vides information on an attacker’s actions from
the attacked host. In this way, data on the at-
tacker’s keystrokes, processes run, files opened,
and other system activities can be recorded. The
key feature of the Sebek client is that it is incor-
porated into the kernel of the operating system
1. Since it is a part of the kernel, it is able to
effectively hide from the intruder. Conceptually,
this article [8] describes that the user space and
the kernel space are mutually exclusive. This be-
ing the case, having the Sebek client become a
part of the kernel is a solid way of hiding the
data capturing component of a honeynet. The
Sebek client then stores in a buffer the recorded
actions of an intruder, encrypts the information,
and sends it to the honeywall to which the honey-
pot is connected. Because the Sebek client is in-
stalled on the attacked host, it provides informa-
tion about what happens on the host which could
not necessarily be gathered from an examination
of the network traffic to and from the host, even
if this traffic could be decrypted. Thus, Sebek
provides a valuable complement to the network
data collected by the honeywall[7].

While making the Sebek client a part of the
operating system helps to keep it hidden from
the attacker, it also creates a problem when hon-
eypots with different operating systems are used.
As Windows is even more different from Linux
than FreeBSD is from Solaris, we need to ensure
that each Sebek client we install is appropriate

1Sebek was originally adapted from a blackhat rootkit
called Adore [1]. Such rootkits were developed to change
the behavior of the kernel without revealing their exis-
tence. Recently, Sony has developed a rootkit aimed to
enforce usage rules on copyrighted materials [3]. This has
produced sharp criticism, not only from advocates of pri-
vacy, but also from Windows experts who claim the code
is poorly written and can compromise the security of the
Windows operating system.

11



for the operating system that it is going to be in-
stalled on. The Honeynet Project has completed
much of this process of adapting the Sebek client
to each operating system environment. For the
Windows environment, the developers have gone
so far as to provide a simple executable which
automatically incorporates the Sebek client into
the kernel of the Windows operating system and
leaves the incorporated Sebek client to be cus-
tomized by the user. For FreeBSD, a loadable
kernel module of the Sebek client is available.
For Linux, the kernel must be rebuilt to incor-
porate Sebek. Information regarding the actual
Sebek client implementation exists on the Sebek
homepage within the honeynet.org website [4].

3 Our Own Honeynet

We wanted to examine the differences between
the attacks seen on different operating systems,
so we decided to set up a Honeynet with several
computers running different operating systems.
We chose to use the Honeynet Project’s Honey-
wall Roo bootable CD-ROM, believing that this
would make the setup portion of the project vir-
tually effortless. Unfortunately, this did not turn
out to be the case. Instead, we found that the
setup became a project in itself. What follows is
a description of our honeynet, the problems we
encountered, how we solved these problems, and
what still needs work.

3.1 Honeynet Architecture

Our honeynet consisted of five machines: one
running the Honeynet Project’s Honeywall Roo
(including a Fedora core), one running RedHat
Linux, one running Windows XP, one running
FreeBSD, and one running Solaris. Because
there was no version of Sebek for Solaris that
was compatible with the Gen III honeywall, we
planned to simply examine the traffic going to
and from the machine. After weeks of crawl-
ing around behind our computers plugging and
unplugging various cables, we obtained a KVM

switch to allow us to easily interact with any of
the machines except the Solaris using the same
monitor, keyboard and mouse. Our honeynet
was located within Swarthmore College’s cam-
pus network; we will refer to this external net-
work as the internet, although being inside of
this network did present problems that we would
not have seen had we actually been directly con-
nected to the internet. All the individual honey-
pots were connected to the honeywall through a
LanTronix 10 base-T ethernet switch (See Fig-
ure 1).

3.2 The Honeywall

The honeywall was a Dell Precision 330 with an
Intel Pentium 4 processor. We installed two ad-
ditional network cards, allowing us two ethernet
connections to the internet one as a route to the
honeypots and one for remote management of
the honeywall and one ethernet connection to
our own honeypot network.

We set up the honeywall to run in bridge mode
as opposed to NAT (Network Address Transla-
tion) mode (See Figures 2 and 3), allowing each
honeypot to have its own IP address because we
wanted each to appear as a distinct target. We
initially had only two network cards because the
Honeywall documentation indicated that a third
network card was only necessary if remote ad-
ministration was desired. Yet, this simple setup
was not functional because our honeywall soft-
ware kept trying to find a third network con-
nection. This prevented us from completing a
full installation of the honeywall, so we installed
a third network card. After this installation,
we needed to provide an IP address for honey-
wall’s configuration utility. Since we were be-
hind Swarthmore College’s network, we could
not simply set an IP address arbitrarily. Be-
cause the honeywall intallation did not include
a DHCP client or any other similar IP configu-
ration program, we could not determine the IP
address from the honeywall machine. We solved
this problem by using the live Linux CD Knop-
pix. This allowed us to run dhclient to get an

12



FreeBSD Windows

HoneyWall

Linux

Network
Swarthmore

Management
Remote

Figure 1: Diagram of Honeynet Architecture

xxx.yyy.zzz.214
Remote Access

xxx.yyy.zzz.194

Attacker

    Switch

        Honeywall

                              Bridge Mode

xxx.yyy.zzz.192

xxx.yyy.zzz.212

Figure 2: Diagram of bridge mode configuration

IP address which we could then enter into the
configuration utility.

One of the main improvements that came with
the Generation III honeywall technology was the
web interface, Walleye. This GUI allows the hon-
eynet administrator to interact with the honey-

Remote Access

xxx.yyy.zzz.194

Attacker

        Honeywall

xxx.yyy.zzz.195

    Switch

10.0.0.1

10.0.0.2

10.0.0.3

10.0.0.4

NAT Mode

Figure 3: Diagram of NAT mode configuration

wall in a more user-friendly environment than
the text-based menu utility that can be run on
the machine. Using this interface, we were able
to observe a small amount of traffic on coming to
and from our honeypots mostly bootp, domain
or NetBIOS traffic, plus any traffic we created

13



ourselves while testing the system. Supposedly,
Walleye identifies what operating system each
machine is running. While this occurred suc-
cessfully for some of the machines connecting to
our honeypots, it initially did not work for the
honeypots themselves for some unknown reason.

On two occasions, we found that we could not
log in to Walleye at all. After we entered in a
username and password, the system would be-
gin the login process but load so slowly that it
never got to the welcome page. We then logged
into the honywall directly to investigate what
might be wrong. Reloading the or even reboot-
ing the honeywall did not fix the problem. Even-
tually, we realized that the directory where the
honeywall was storing its data had become full.
The first time, moving the data to a directory
with more free space fixed the problem. The
second time this problem occurred, we realized
that we needed more space than was available
on the honeynet’s hard drive, so we dumped all
the data to another machine. We then used the
menu utility to clean out the logging directo-
ries. In doing so, we noticed an interesting mes-
sage: apparently the honeywall had not yet been
programmed to clean out its MySQL database
files. Since the honeywall was still failing to
start MySQL, which it uses to make its collected
data available to view over the internet and man-
age the users for Walleye, we initially tried re-
moving several database files that were partic-
ularly large, thinking that perhaps the overly
large size of the database was preventing it from
loading. This did not fix the problem, however,
so we restored the files from the external ma-
chine to which we had previously dumped all our
data. After re-running the startup script for the
MySQL daemon, we investigated the error pro-
duced. The error itself was not very informative,
but it did point us to a log file, which indicated
that one of our database tables may have been
corrupted. A quick Google search on repairing
MySQL tables revealed the program myisamchk.
This successfully repaired the table, but then the
startup script complained about the next table.

After running the program on all of the tables
in the database, we were finally able to start the
MySQL daemon and successfully log in to Wall-
eye. Looking back at this problem, we found
it surprising that the amount of data generated
was large enough to cause significant issues with
the honeywall machine, since we saw only back-
ground noise and test traffic, and no actual at-
tacks. Clearly, for a honeynet that is being used
to collect data for research, even for a relatively
short term project, the issue of where and how
old data should be stored would have to be very
carefully considered.

The simplest way to examine traffic on the
honeynet is to search for connections by date,
time, IP address, and or port from the Walleye
welcome page. The results can either be returned
as a PCAP file or in “Walleye flow view,” the
latter being much easier to interpret. At the be-
ginning of the month of December, however, we
began encountering an error whenever we tried
to see results in Walleye flow view. The error
stated that the month “12” was out of the range
0..11, and indicated a file on the honeywall where
the problem had occurred. An examination of
this file was not enlightening, as it was written
in Perl script, with which we have no experience.
A search of the Bugzilla bug information server
on Honeynet.org produced no results. We tried
running YUM (Yellow-dog Updater, Modified)
again to get the latest updates for the honey-
wall, but the only change we observed was that
the graph of recent activity on the honeywall,
usually displayed on the Walleye welcome page,
was no longer loading correctly. By this time,
we were several days into the month of Decem-
ber, and another search of the Bugzilla server
produced one record. This linked to a possible
solution: change one number in the file on the
honeywall that had been causing problems [5].
We tried this, and sure enough, it solved our
problem. The author of the tip admitted that
he did not know what other effects this change
might have, but we have not as yet observed any
negative repercussions. We did, however, notice

14



that in some cases, Walleye could now recognize
the operating system of our Linux and Windows
honeypots. We are still unsure why this feature
only sometimes works: it does not seem to have
any correlation to the type of connection being
monitored. We also noticed that when we try to
see what packets Snort has dropped using Wall-
eye’s “System Status” feature, we see a message
saying that no packets have been dropped that
day, while checking the same field using the menu
utility does display information on a number of
packets that have been dropped.

Since data control is a very important part of
any honeynet, we wanted to do a quick test of
our ability to control the traffic leaving our hon-
eynet. “Roach Motel mode” allows the honeynet
operator to allow traffic in but prevent any traf-
fic out. We tried a test that involved using ssh
to log in to a honeypot and then ping a machine
outside the honeynet. As expected, this test suc-
ceeded fully in normal mode, but in Roach Motel
mode the user could log in to the honeypot but
the ping command did not succeed. We then
examined the “Emergency Lockdown” feature.
Supposedly, this prevents any traffic in or out of
the honeywall except through the management
interface. We found that turning on this op-
tion did stop an ssh connection in progress to
one of our honeypots, and turning off the op-
tion allowed this connection to resume. Unfor-
tunately, all connections to the management in-
terface also failed to work with the lockdown op-
tion on. This may be an issue unique to our
configuration, since we have our honeypots and
our remote management interface on the same
Class-B network, (the Swarthmore College net-
work), or it may be a problem for any setup.
In either case, it would make a situation where
a honeynet is monitored exclusively through the
remote management interface impossible.

3.3 Linux

The Linux machine was a Dell Precision 330 with
an Intel Pentium 4 processor. We initially had
the machine running RedHat 7.2 with a 2.4.9

Linux kernel. The current version of Sebek for
Linux 2.4 worked with the 2.4.30 kernel. This
posed a problem. We updated the kernel but
then we discovered that this updated kernel was
not completely compatible with the version of
Redhat that we were using. This incompatibil-
ity manifested itself in the system’s inability to
recognize the ethernet card. Since internet con-
nectivity is an essential part of a honeynet, we
decided to install a more recent version of Red-
Hat. We installed RedHat 9, updated to a 2.4.30
kernel, and installed the Sebek module. This ver-
sion of Sebek appears to be functioning correctly:
packets are dropped and logged at the honey-
wall, and examining these packets through the
web interface shows that individual commands
are being recognized.

We were able to get an IP address on this ma-
chine by running dhclient, but we could not ping
anything beyond our honeywall or reach any sites
with a web browser. We determined that this
problem must be due to a setting on the honey-
wall, but we were unable to locate the relevant
field in the menu configuration utility. Then,
when examining the configuration page on the
Walleye web GUI, we found the source of the
problem: the “honeypot public address(es)” field
had been set to the IP of the external NAT mode
interface of the Honeywall, and the honeywall
was not in NAT mode. After entering in the
specific addresses of the honeypots, we were able
to connect to the network beyond our honeywall.

3.4 FreeBSD

The FreeBSD machine was a Dell OptiPlex GXa
with an Intel Pentium 2 processor. We had the
machine running FreeBSD 5.2.1. We loaded the
FreeBSD version of Sebek 3.0.3 onto the ma-
chine, and we have observed packets being sent
out, but they are considered by the honeywall to
be malformed. The current FreeBSD version of
Sebek 3.0.3 is still in testing, so we are not sure
whether there is a problem with the program or
with the way we have it set up. By running
dhclient, we were able to get an IP address on

15



this machine, however, we soon began getting er-
ror messages that this IP address was not unique.
Returning several days later, we found an error
message claiming that the machine’s IP address
was 0.0.0.0 and was already in use. Adding the
IP address the machine had obtained previously
to the /etc/hosts file resolved this problem tem-
porarily, but it soon resurfaced. We attempted
to run dhclient again to obtain a new IP, but
the program seemed to be malfunctioning: it ran
for several minutes without producing any out-
put. At this point, the network problems of our
FreeBSD honeypot are still unresolved.

3.5 Windows

The Windows machine was a Dell Precision 330
with an Intel Pentium 4 processor. The machine
was running Windows XP Professional with no
service packs or updates installed. We loaded the
newly available Windows version of Sebek 3.0.3
onto the machine, and it appeared to be work-
ing. When we tried to connect the machine to
the internet, however, it began to spontaneously
reboot. After a few cycles, it got to the point
where it booted up to the login screen and im-
mediately began booting again. We initially as-
sumed this must be due to a virus, but when
we examined the network traffic, we were unable
to see any connections that may have allowed a
virus to reach the machine. We thus concluded
that the Sebek client itself was causing the com-
puter to malfunction. We reinstalled the operat-
ing system and the Sebek client. This time we
saw only a single spontaneous reboot, and after
that the machine appeared to function normally.
We did see occasional error messages upon lo-
gin, but we were unable to decipher them, as
they were formatted to be sent to Microsoft and
not to be readable on the machine. At this point
we could see that the machine was sending Se-
bek packets in response to typed commands, but
again the honeywall reported that these pack-
ets were malformed. Although this machine did
get an IP address, it also could not connect to
the internet with a web browser until the afore-

mentioned change to the honeywall configuration
(See section 3.3).

4 Conclusion

We have succeeded in building a small honeynet
with one fully functional and two partially func-
tional honeypots. Our Linux honeypot collects
data using the Sebek client and the honeywall
correctly interprets this data. Our Windows
honeypot sends improperly formed Sebek pack-
ets that cannot be decoded by the honeywall.
Our FreeBSD honeypot was previously able to
send malformed Sebek packets, but now has
problems holding a valid IP address. Our hon-
eywall can limit or fully block outgoing traffic as
desired, although a complete system lockdown
seems to also block the management interface.

In doing this project, we discovered that the
creators of the Honeywall Roo package had made
certain assumptions about the knowledge base
that their users would have. Those building a
Honeynet are expected to know how to set up
a network. This may seem obvious, but re-
searchers in a field other than networking, (com-
puter security for example), may have an interest
in setting up a honeynet but no previous experi-
ence with networks. The honeynet configuration
utility also seems to be written for people who
are in control of the network on which they are
placing their new honeynet. Because we were on
Swarthmore College’s campus network, this was
not the case for us, and we had to briefly run
another operating system on our honeywall ma-
chine just to get an IP address. In addition, it is
assumed that those installing Sebek onto a hon-
eypot know how to work with the kernel of that
honeypot’s operating system. Installation onto
the Windows machine was very simple, although
ultimately the installed module did not func-
tion correctly. Getting Sebek onto the FreeBSD
machine involved inserting a kernel module and
stripping the kernel, and this program also did
not work as it should have. The Linux version
of Sebek also required loading in a kernel mod-

16



ule. Because the kernel on the machine we had
was significantly older than the version that the
Sebek module expected, we had to update the
kernel - something we had to learn how to do.
The instructions for installing Sebek on Linux
also mention that the module will be uninstalled
every time the machine reboots unless the mod-
ule is loaded in a startup script. We have never
worked with startup scripts, so this is a task that
has not yet been completed.

We also encountered problems specific to the
honeynet itself. In less than two months, even
with no actual attack traffic being observed, the
honeynet can fill up the directory it uses to store
data. This causes problems with Walleye or any
other program that uses the database of cap-
tured traffic. In some cases, this can even cause
the tables in the honeywall’s MySQL database
to become corrupted. Running the program my-
isamchk can repair these tables, but this takes
a significant amount of time with large tables.
Also, the honeywall’s menu utility command to
clean out the logging directories does not clean
the MySQL database files. If these become large
enough to cause problems even without being
stored in the same directory as other large data
files, some method for cleaning them out man-
ually would have to be found. In view of the
serious problems that large amounts of data can
cause, a honeynet operator should have a loca-
tion to which old data can be transferred for stor-
age and do this transfer frequently.

The Sebek modules for Windows and FreeBSD
produce malformed packets. We are unsure
whether this problem is specific to the way in
which we have the modules configured on our
honeypots or whether it would occur for any con-
figuration. In any case, hopefully the next revi-
sion of the module for each operating system will
include a fix for this bug.

We encountered a problem in the Walleye in-
terface that prevented it from displaying any
traffic for the month of December. This was fixed
by making a slight modification to a Perl script
file on the Honeynet, (See [5]).

Within the “System Status” section of the
Walleye System Administration feature, Snort
alerts fail to show up, even if they have occurred
and are clearly visible via the menu utility on the
the honeywall itself. We have not done a thor-
ough investigation of the other options within
this section, since most of our focus was on get-
ting the basic features of our honeynet up and
working, but this is definitely an area for future
work.

During an “Emergency Lockdown,” the man-
agement interface also appears to be blocked.
We are unsure whether or not this problem is
specific to our setup, (our management interface
is on the same network as the public interface
to our honeynet), but it is an important area for
further exploration, since it affects whether or
not a honeynet can be managed entirely through
remote access.

We recognize that the Honeywall Roo is still a
relatively new technology, and as such will have
many bugs. We hope that this record of our ex-
periences with the software will be helpful both
to other researchers beginning a honeynet exper-
iment of their own and to the developers at the
Honeynet project who are constantly working to
improve the system.

5 Acknowledgements

Thanks to Ken Patton for getting the Honey-
wall installation started and for being an es-
sential team member throughout this project.
Thanks to our sysadimin Jeff Knerr for toler-
ating us, giving us equipment, feeding us candy,
and providing considerable knowledge and assis-
tance. Thanks to the CS97 class for all the help
and moral support. Most of all, thanks to Pro-
fessor Ben Kuperman for inspiring us to try this
project and for providing invaluable help every
step of the way.

17



References

[1] Bill McCarty. The honeynet arms race.
”IEEE Security and Privacy”, pages 79–82,
December 2003.

[2] ”Fabien Pouget and Thorsten Holz”.
A pointillist approach for com-
paring honeypots, 2005. URL
www.honeynet.org/papers/individual/
DIMVA2005_Pouget_Holz.pdf.

[3] Bruce Schneier. The real story of the
rogue rootkit, November 2005. URL
http://www.wired.com/news/privacy/
0,1848,69601,00.html.

[4] Sebek Homepapge. URL http://www.
honeynet.org/tools/sebek/.

[5] Jaime Sotelo. Get an error with
walleye and fixed it, 2005. URL
http://www.securityfocus.com/
archive/119/418383/30/0/threaded.

[6] Lance Spitzner. The Honeynet Project:
Trapping the Hackers. IEEE Security &
Privacy, pages 15–23, April 2003.

[7] ”The Honeynet Project”. URL http://
www.honeynet.org/papers/sebek.pdf.

[8] The Honeynet Project, May 2005. URL
http://www.honeynet.org/papers/
honeynet.

[9] The Honeynet Project. Honeynet
project overview, 2005. URL
http://honeynet.org/speaking/
honeynet_project-3.0.1.ppt.zip.

[10] Nicholas Wever, Vern Paxson, Stuart Stani-
ford, and Robert Cunningham. A taxonomy
of computer worms. WORM, 2003.

[11] Vinod Yegneswaran, Paul Barford, and Jo-
hannes Ullrich. Internet intrusions: Global
characteristics and prevalence. SIGMET-
RICS, 2003.

18



Proceedings of the Class of 2006 Senior Conference, pages 19–26,
Computer Science Department, Swarthmore College c©2005

Profiling Honeynet Attackers

Connie Li Taufik Parsioan

December 12, 2005

Abstract

This paper describes the value and process of
using honeynets to profile attackers in the black-
hat community. Data were taken from a com-
promised honeynet deployed by The Honeynet
Project and were analyzed for significant events.
The data were then used to create a profile of
the type of attackers attempting to break in to
systems similar to the honeynet and the exploits
that may have been used. After an extensive
analysis of the alerts given out by the Apache
and Snort logs, we find that only inexperienced
hackers attack the honeynet for the pure oppor-
tunity of it.

1 Introduction

Honeynets are networks of systems that are de-
ployed for the purpose of luring hackers into a
network that can monitor their activities. There
are two different types of honeynets: production
and research. The former are low interaction net-
works that emulate services for the purpose of
protecting organizations while the latter are high
interaction networks that provide real services to
the attacker [Spib]. Honeynets are valuable be-
cause of their ability to collect large amounts of
information about attackers and the types of at-
tacks without doing any harm to the system or
putting any valuable information at risk. Data
collected on a honeynet is also easier to analyze
since any activity recorded is assumed to be ma-
licious, given that the network serves no practical
purpose.

Honeynet forensics is a specific type of com-

puter forensics in which specialized data analy-
sis techniques are applied only to the data col-
lected on the honeynet. The data provided by a
honeynet is almost certainly easier to view than
forensic data from any normal system, given
that specialized software capturing all activity
on a system is often previously installed on hon-
eynets. The goal of honeynet forensics is to
recreate attacks from the information collected
to obtain a better understanding of what took
place after the system has been compromised
[RBBK04]. The final results should be able to
describe the basic who, what, where, when, and
why of an attack.

A subfield of honeynet forensics is profiling us-
ing honeynets. Using the results obtained from
analyzing the honeynet data, profiling attempts
to identify the person or group responsible for
the attack and their motives. Profiling is a use-
ful tool because past profiles might help predict
what future and current cases of attackers may
be like. Profiles of computer hackers also give
valuable insight into the blackhat community
(hackers working towards negative goals) which
is often seen as a mysterious or underground sub-
culture [KAS04].

In the next section, we will discuss in more
detail the previous research that has been con-
ducted in the area of honeynet forensics and pro-
filing. We will then go on to discuss our attempt
at profiling attackers using data taken from a
compromised honeynet. First, we will explain
the origin of the data that were used during the
project and detail the significant events that oc-
curred on the honeynet. Following that will be
our analysis on the data that we’ve collected. We

19



will then conclude the paper with our thoughts
on how the information we gathered can be used
to profile the attackers.

2 Related Work

The field of honeynet forensics, or more specif-
ically, profiling using honeynet data, is a rela-
tively young field of computer security. While
there are numerous papers giving step by step
analyses of various attacks on regular systems
[Che92, Spia], many do not specifically attempt
to create a profile of the attacker or identify him
or her. Past research mainly attempts to de-
scribe how to perform the information gathering
stages of computer forensics. There has also been
a lot work in establishing stages in the process
of honeynet profiling [RBBK04], creating an at-
tacker profile, and finally, being able to classify
both an attacker and the exploits used.

Two separate groups of data are left behind
by a blackhat after an attack on the honeynet:
network clues and system and file information
[RBBK04]. The network activity information
contains all traffic going to and from the hon-
eypot while the compromised host provides the
system logs and tools which were used by the in-
truder. System information can also be obtained
by examining scripts and binaries of rootkits or
other files installed or left behind by the black-
hat. These two groups of information can be
used to create two separate timelines of the
events of an attack, which can then be merged
and used to answer questions such as who was
responsible for the attack [RBBK04].

Once all of the data has been collected, an at-
tacker profile can be created from what is known.
An attacker profile is made up of four things:
characteristics of the event, consequences of the
event, characteristics of the blackhat and char-
acteristics of the target [KAS04]. Characteris-
tics of the event describe why the blackhat might
have carried out the attack. These characteris-
tics, such as revenge, greed, or anger, help give
a better understanding of the blackhat’s motiva-

tion. Consequences of the event describe why the
attacker might have chosen the particular tar-
get and timing of his or her attack. This helps
to determine whether the attack was targeted
or merely a random exploit of a known vulner-
ability. Characteristics of the blackhat discuss
the person or group of people responsible for
the attack with information such as the moti-
vation, skill, experience, knowledge, nationality,
and funding of the attacker. Finally, character-
istics of the target give information about the
system that was compromised. A set of answers
to these questions will help build a profile that
may assist in identifying attackers and anticipat-
ing or eliminating targets [KAS04].

There have been several attempts to try to
understand and define the blackhat community.
Hacker taxonomies are often constructed us-
ing one or a combination of the following fac-
tors: activities, knowledge, motivation, experi-
ence and intent. As an example, Kilger, Arkin
and Stutzman [KAS04] borrow from the FBI’s
MICE (money, ideology, compromise, ego) classi-
fication of individuals who commit espionage, to
create a classification of blackhats based purely
on motives. Their six categories, money, enter-
tainment, ego, cause, entrance to social group,
and status (MEECES), also appear in other tax-
onomies such as Chantler’s [Cha96], in which
there are three groups, elite, neophytes and
losers and lamers, which are defined by a hacker’s
activities, skill level, knowledge and motivation.
Chantler went even further to conclude that of
the blackhat community, 30% fell into his elite
group, 60% were neophytes, and 10% were losers
and lamers. Another taxonomy which builds
of previous research was created by Rogers, in
which hackers were divided into seven distinct,
although not necessarily mutually exclusive, cat-
egories based on ability: newbies, cyber-punks,
internals, coders, old guard hackers, professional
criminals, and cyberterrorists [Rog00]. Tax-
onomies such as these and an understanding of
the blackhat community are essential to profiling
and identifying specific hackers or hacker groups.

20



3 Analysis of Log Files

The honeynet logs which we attempted to an-
alyze were taken from a data set provided by
The Honeynet Project. The Honeynet Project is
a non-profit organization dedicated to improv-
ing computer security by providing information
about types of attacks, attackers, and motives.
They obtain data from various honeynets de-
ployed by members of the Honeynet Research
Alliance. This particular data set was published
on The Honeynet Project’s website for a Scan
of the Month Challenge. The Honeynet Project
organizes these monthly challenges so that mem-
bers of the security community can have the op-
portunity to examine actual honeynet data and
share their methods and findings. To reduce the
task of extensively searching through the entire
set of log files, we initially read through the re-
sults of the challenge to learn what significant
events occurred on the honeynet.

In total, four different types of log data were
provided: Apache logs, Snort NIDS logs, Linux
syslogs, and iptables firewall logs. Each data set
has a slightly different starting and ending date,
but in general, the data ranges from January 20,
2005 through March 17, 2005. Since the Apache
and Snort logs will suffice for the purpose of this
paper, discussion of the other two logs will be
omitted.

3.1 Apache Logs

The Apache logs contain a record of all user ac-
tivities and errors on the honeynet. They are
separated into requests which produced error
messages and requests which were successfully
processed by the server. Apache logs contain
the IP address of the remote system, the time
of request, and also the specific request of the
attacker.

The Apache logs of this honeynet reveal that
the honeynet was compromised using an AW-
Stats.pl exploit on February 26, 2005. AWStats
is a server logfile analyzer that graphically gen-
erates all web, mail, or ftp statistics. It can also

be run as a CGI in which the program is stored
and executed on the web server when requested
by a client. In versions 5.7–6.2 of AWStats, the
awstats.pl script contained a bug in which a com-
mand prefixed and postfixed with the character
’—’ can be executed on the system. So, if AW-
Stats exists in the cgi-bin directory, running a
command such as the one recorded at 21:13:25
on 26/Feb/2005:

• ‘‘GET/cgi-bin/awstats.pl?configdir=
%7cecho%20%3becho%20b_exp%3buname%
20%2da%3bw%3becho%20e_exp%3b%
2500HTTP/1.1’’

will cause configdir to execute the command:

• ‘echo; echo b exp; uname -a; w; echo e exp’

which gives attacker information about the
system and also reveals user information such
as who is logged on the system and what they
are doing. This AWStats exploit appears to
be relatively simple to execute for a program-
mer of even little experience. Regardless, the
attacker can use it to gain valuable system in-
formation by running commands that would go
possibly undetected on any regular system given
that they would appear to be harmless AWStats
commands.

From our data we can see that the attacker
uses this exploit to download a tar file twice in
the span of a minute with two different IP ad-
dresses, once in Italy and another in Germany
(shownq below). Given the specificity of the
download and the period of time, it seems safe for
us to assume that this is the same attacker. From
the IP address, we see the attacker downloaded
the tar file from a Romanian website shady.go.ro.

• 213.135.2.227--[26/Feb/2005:14:13:
38-0500]‘‘GET/cgi-bin/awstats.pl?
configdir=%20%7c%20cd%20%2ftmp%
3bwget%20www.shady.go.ro%2faw.
tgz%3b%20tar%20zxf%20aw.tgz%3b%
20rm%20-f%20aw.tgz%3b%20cd%20.

21



aw%3b%20.%2finetd%20%7c%20HTTP/
1.1’’200410‘‘-’’‘‘Mozilla/4.
0(compatible;MSIE6.0;WindowsNT5.
1;SV1;FunWebProducts)’’

• 82.55.78.243--[26/Feb/2005:14:14:
43-0500]‘‘GET/cgi-bin/awstats.pl?
configdir=%20%7c%20cd%20%2ftmp%
3bwget%20www.shady.go.ro%2faw.
tgz%3b%20tar%20zxf%20aw.tgz%3b%
20rm%20-f%20aw.tgz%3b%20cd%20.
aw%3b%20.%2finetd%20%7c%20HTTP/
1.1’’200410‘‘-’’‘‘Mozilla/4.
0(compatible;MSIE6.0;WindowsNT5.
1;SV1;FunWebProducts)’’

Although we have no way of verifying this,
the results of this challenge stated that with this
line of code, an IRC bot was downloaded and
installed. This seems to be a reasonable claim
given that IRC activity was recorded on the hon-
eynet the same day as this download. We also
observed that another tar file was downloaded
using the same technique and website on March
2. The respondents to this challenge also ana-
lyzed this file and found it to be a backdoor to
port 60666.

Something interesting that occurred on the
honeynet was that on March 12, an attacker
(possibly the original) attempted to download
the same two tar files from the exact same web-
site. This time however, the request failed, indi-
cating that the version of AWStats on the hon-
eynet was updated to a patched version. There
appears to be two reasons for this; either the
original attacker was attempting to remove any
traces of himself on the system, or another at-
tacker found this machine and wanted to close
any vulnerabilities to the system in order to
‘own’ the machine.

3.2 Snort NIDS Logs

Snort is a knowledge-based, rule-driven intrusion
detection system aimed at monitoring system
use and detecting any malicious network traffic

or activities. Knowledge-based intrusion detec-
tion systems contain information about known
attacks and system vulnerabilities and search
through system logs for evidence of attacks
which are similar in pattern. Intrusion detection
systems can also be behavior based, in which in-
formation about normal user behavior is given,
and any deviations from that behavior is flagged
as an attack. The information acquired from
a knowledge-based intrusion detection system is
usually more accurate but also less complete
than behavior-based systems [DDW].

The snort logs recorded from this honeynet
give an idea of the types of attacks and probes
that any ordinary computer connected to a net-
work is likely to be repeatedly subject to. In
total, 85 unique snort alerts were recorded over
the period of February 25 through March 31. We
will examine and describe a few common alerts.

3.2.1 RPC Alerts

• RPC portmap status request UDP [Classifi-
cation: Decode of an RPC Query] [Priority:
2]

• RPC portmap listing TCP 111 [Classifica-
tion: Decode of an RPC Query] [Priority:
2]

• RPC STATD UDP stat mon name format
string exploit attempt [Classification: At-
tempted Administrator Privilege Gain] [Pri-
ority: 1]

If successful, these scans can reveal to any po-
tential attacker the services that are available on
the victim hosts. The first alert requests port in-
formation for the status service. If this request
is successful, the attacker might then attempt
to access this service and gain more information
about the system.

RPC Portmapper is a server which assigns
port numbers to services and is commonly on
port 111. The second RPC snort alert ap-
pears to be a request to gain information about
the services available that were assigned by the

22



portmapper. While it might be possible that this
inquiry is not malicious, an argument could be
made that not everyone should be able to ac-
cess this information or people who need to know
this information shouldn’t need to inquire for
it. Thus, it is reasonable to flag these portmap
queries as signs that an attack is about to hap-
pen.

The third RPC alert is an attempt to ex-
ploit an old string format vulnerability in the
rpc.statd service which is sometimes packaged
with Linux distributions. The rpc.statd service
passes a format string supplied by the user to
the syslog() function. The vulnerability in this
program was that it neglected to validate the in-
put so that a user could construct a string that
would inject machine or executable code into a
process address space, which would execute with
the privileges of the rpc.statd process, usually
root. With these privileges, a malicious user
could create or delete any file with the same ease
as a root user. This vulnerability in rpc.statd
was first noted in 1996 and exploits of it were
seen in 2000. The bug has since been fixed and
only unpatched RedHat versions 6.2 or older are
affected.

3.2.2 MS-SQL Alerts

• MS-SQL Worm propagation attempt [Clas-
sification: Misc Attack] [Priority: 2]

• MS-SQL Worm propagation attempt OUT-
BOUND [Classification: Misc Attack] [Pri-
ority: 2]

• MS-SQL version overflow attempt [Classifi-
cation: Misc activity] [Priority: 3]

The MS-SQL Worm, also known as the Slam-
mer worm, exploits a vulnerability on a Mi-
crosoft SQL server, a database management sys-
tem. It is known as the first Warhol worm,
given its capability to infect the entire inter-
net within 15 minutes [SPW02]. In January
2003, the Slammer worm was able to infect more
than 90% of computers within 10 minutes and

caused denial of service on several Internet hosts.
Systems running vulnerable versions of the Mi-
crosoft SQL server were susceptible to heap or
stack overflows. Once a UDP packet sent to port
1434 successfully infects a host, its code is exe-
cuted following either a heap or stack overflow.
The code randomly generated other IP addresses
and targeted them searching for the same vul-
nerability. Systems not running Microsoft SQL
server, or patched versions of this system can not
be harmed by this worm propagation attempt.
The OUTBOUND alert informs an administra-
tor that there is an infected machine on the sys-
tem that is sending out the corrupted UDP pack-
ets. This indicates that an MS system is on the
honeynet but we don’t have enough evidence to
verify that. The overflow attempt alert signi-
fies that the UDP packet is trying to execute
its code and cause a heap or stack overflow. It
makes sense then that the first and third MS-
SQL alerts are often seen together.

3.2.3 ICMP PING Alerts

• ICMP PING CyberKit 2.2 Windows [Clas-
sification: Misc activity] [Priority: 3]

PING is a network tool that sends packets to
a particular host to determine whether or not
it is reachable and correctly functioning. It can
also report how long it took for the packets to
get to the host and back and how many packets
were dropped. An attacker can send the ICMP
echo request packets and listen for a response
to determine whether this machine is active and
can be compromised. One of the actions of the
W32.Welchia.Worm, seen in August 2003, was
to PING the IP address it randomly generated
to see if the machine was active and able to be
infected.

3.2.4 ICMP Destination Alerts

• ICMP Destination Unreachable Port Un-
reachable [Classification: Misc activity]
[Priority: 3]

23



The system returns “ICMP Destination Un-
reachable Port Unreachable” alerts when a
packet fails to reach its destination. This can
happen if the packet is being sent to a port that
is currently closed, or not in a listening state, but
it can also happen if the gateway finds a shorter
route to send the traffic through. Another possi-
bility for receiving this message is that the gate-
way does not have enough buffering capacity to
forward the packet. Because of the fact that this
message can appear in multiple ways, a single
alert of this kind does not indicate malicious ac-
tivity. It must be examined with the other kinds
of alerts to see if someone is trying to get access
to a port that they are not allowed to.

4 Profiling

4.1 Characteristics of the Target

Knowing the characteristics of our target may be
significantly helpful when investigating future at-
tacks, since similar systems are likely to be the
next targets of the blackhats who attempted to
hack into this particular network. From the hon-
eynet logs provided, we can guess that there were
three machines on the system: combo, bridge
and bastion. Both the names of the machines on
the honeynet and the IP addresses (11.11.*.*)
were santized by the Honeynet Project. Given
that the system deployed is a honeynet, we also
believe that it is safe to assume that there was no
valuable information (actual or spurious) stored
on any of the systems to excessively attract any
attackers. It also seems to be a reasonable as-
sumption that there was a relatively low level
of security on the honeynet, nothing that would
openly try to prevent anyone from attacking the
system or try to stop someone once they had
compromised the honeynet.

From the snort alerts, it seems reasonable to
conclude that many of the attacks or scans at-
tempted were not specific to certain character-
istics and services of the honeynet. Commands
that were run appear to be relatively simple and

easily repeatable across many systems. Thus,
the system was probably unaffected by a ma-
jority of these scans and worms simply because
they were not applicable to the files and services
available on the honeynet.

4.2 Characteristics of the Events

The characteristics of an attack might give us
insight into the motives of an attacker. They
will tell us what caused the attack to take place.
As previously stated, a blackhat may try to at-
tempt an attack to gain revenge, status, infor-
mation, money, or might try a hack simply for
the challenge. None of the attempted hacks on
the honeynet seemed to be for economic or po-
litical reasons, especially given that fact that as
a honeynet, the network likely contained little to
no information of value to blackhats with these
motives.

4.3 Consequences of the Events

Understanding what the consequences of each
event are allows us to understand why a black-
hat might have chosen this particular time and
target to attack. The results of an attack are of-
ten beneficial to the attacker and his cause but
can also be harmful if he or she is not skillful
enough. The Apache logs indicated that many
requests involved gaining root access to the hon-
eynet and/or executing commands to learn more
about the system. Given that we are fairly cer-
tain that no information of value was on the sys-
tem, it seems reasonable to state that the main
consequence of many of the events is to gain con-
trol of bandwidth or more systems to carry out
further attacks or propagate harmful worms.

A more specific consequence of the AWStats
exploit was the ability to install an IRC bot on
the compromised machine. IRC bots typically
need to be run on systems with long uptimes
and a fast and stable connection to the internet.
Thus, there are several advantages if a blackhat
manages to find a system that is not his own to
run the IRC bot.

24



4.4 Characteristics of the Blackhats

Given that there were often several events taking
place on the honeynet simultaneously, it is dif-
ficult to pinpoint one attacker in particular and
conclude which events he or she is responsible
for. Thus, we will discuss generally the types of
blackhats who attempted to break into the sys-
tem and what their motives might be.

From what we saw in the data, even when we
could guess that multiple actions were likely per-
formed by the same blackhat, different IP ad-
dresses were logged, indicating that the attacker
likely had multiple systems under his or her con-
trol. So we conclude that, although helpful, IP
addresses are not likely to be conclusive regard-
ing the nationality or location of our attackers.
While we also choose not to rely on the times
of attacks because of the numerous attackers, we
can consider the duration of attacks to determine
the amount of resources necessary to carry them
out. Resources can be viewed in terms of time
and money. None of the attacks attempted re-
quired any type of funding other than needing
an actual machine to connect to the target. Al-
though it did appear that some attackers used
multiple machines to carry out their attacks,
they were not ultimately necessary for success.
They merely aided in the anonymity of the at-
tacker. The attacks made on the honeynet also
did not seem to require much time and dedica-
tion. We did not have evidence of any attack-
ers spending an extended, continuous amount of
time attacking the honeynet or an attacker con-
sistently returning to the honeynet.

5 Conclusions and Future
Work

The profile we created from our data shows that
most attacks on the honeynet were done by neo-
phytes, hackers with a basic level of knowledge
and experience, but still learning. We came to
this conclusion after finding that most attacks
on the honeynet were unoriginal, older exploits

for which most systems are no longer vulnerable
to. There was also no evidence to support that
the honeynet was specifically targeted as acts of
vengeance or greed. Most events on the system
were simply acts of network or application recon-
naissance to find services or vulnerabilities.

It appears that the honeynet provided only
basic services and had a limited amount of in-
formation, if any. Thus, we conclude that it is
unlikely for systems similar to this one to attract
hackers above the neophyte level. Although this
information is valuable, it is also important to
obtain information about attackers of all levels,
including the elite level. It is clear though, that
elite attackers are unlikely to attack basic hon-
eynets that have no additional means of attract-
ing blackhats. Additional work complementing
this project might include deploying honeynets
which would attract elite attackers in order to
obtain a more complete database of knowledge
of the hacker community.

References

[Cha96] N. Chantler. Profile of a Computer
Hacker. Infowar, 1996.

[Che92] B. Cheswick. An evening with
Berferd, in which a hacker is lured,
endured, and studied. Proceedings
of the Usenix Winter ’92 Conference,
1992.

[DDW] Herve Debar, Marc Dacier, and An-
dreas Wespi. Towards a taxonomy of
intrusion-detection systems.

[KAS04] Max Kilger, Ofir Arkin, and Jeff
Stutzman. Know Your Enemy. 2nd
edition, 2004.

[RBBK04] Frederic Raynal, Yann Berthier,
Philippe Biondi, and Danielle
Kaminsky. Honeypot forensics.
Proceedings of the 2004 IEEE
Information Assurance Workshop,
2004.

25



[Rog00] Marc Rogers. A New Hacker Taxon-
omy. 2000.

[Spia] Lance Spitzner. Know Your Enemy:
A Forensic Analysis.

[Spib] Lance Spitzner. The Honeynet
Project: Trapping the Hackers.

[SPW02] Stuart Staniford, Vern Paxson, and
Nicholas Weaver. How to 0wn the
Internet in Your Spare Time. Pro-
ceedings of the 11th Usenix Security
Symposim, August 2002.

26



Proceedings of the Class of 2006 Senior Conference, pages 27–33,
Computer Science Department, Swarthmore College c©2005

Building a Neural Network for Misuse Detection

Alan McAvinney Ben Turner

December 16, 2005

Abstract

One of the fastest-growing areas of computer sci-
ence research is in the area of security, specifi-
cally in intrusion detection. Much research has
been done to attempt a functional and useful
intrusion detection system, but so far no satis-
factory solution has emerged. Recently, atten-
tion has focused on using artificial intelligence to
train an intrusion detection system (IDS), rather
than trying to build one from scratch. A machine
learning intrusion detection system has many po-
tential advantages over both human-engineered
rule-based expert systems and purely probabilis-
tic approaches. Of the many types of machine
learning systems, neural networks offer one of the
most promising methods for creating intrusion
detection systems that are accurate and man-
ageable. In this paper we present our intrusion
detection system, which uses the audit logs gen-
erated by the Audlib software to train a simple
recurrent network to flag system events as either
part of an attack, or not part of an attack.

Keywords: intrusion detection, misuse

detection, machine learning, neural

networks.

1 Introduction

1.1 Intrusion Detection Systems

An intrusion detection system (IDS) attempts
to identify the occurrence of unusual, illegal,
and/or undesired accesses to a computer or net-
work of computers. The IDS creates alerts which
can direct a system administrator or security

professional (which might theoretically be an-
other computer program) to records of attacks,
so that data can be recovered, security improved,
and, potentially, legal action taken against the
intruder. Thus it is important that the IDS have
both a high rate of true positives (that is, few
attacks go undetected), and a low rate of false
positives (that is, few non-attacks are mistakenly
labeled as attacks).

A great deal of work has been done in ana-
lyzing the performance of various kinds of IDSs;
see Section 2 for a detailed discussion. After a
review of the literature, we believe that one of
the most fruitful approaches for IDSs in the near
future will be in machine learning systems. In
this spirit, we implement a neural-network-based
IDS. A neural network, specifically a type of neu-
ral network called an Elman Network or a Simple
Recurrent Network [Elm90], is a learning system
which is well suited to tasks which require some
temporal or contextual knowledge to complete1.
Our project was to train a neural network to ac-
curately classify system events as attacks or not
attacks.

There are essentially two components to any
IDS: a record of potentially relevant events on
the computer under attack, and an indication of
which events correspond to attacks. Most IDS
research focuses on the latter, and rightly so; but
it is worth noting that the IDS can only be as
good as the data it is fed. (For a discussion of
how this is an especially important concern in a
neural-network-driven IDS, see Section 1.3.) For
our system, we chose to use the Audlib audit

1For instance, a neural network can learn to predict

that the next bit in the series 01010101 is probably 0.

27



log generating package [Kup04]. Audlib replaces
standard library calls with new versions which
record the calling process, the arguments to the
library call, and other useful information before
letting the intended library call go through nor-
mally. We then pre-processed the data by pars-
ing Audlib’s log files into lists of real values to
be fed directly to the neural network as input.

1.2 Theory of Neural Networks

A neural network is based on the idea, inspired
by biological neuron-based brains, that many
simple nodes, densely connected, can produce
complex output. Each node takes a set of real-
valued inputs and outputs a single real-valued
output; nodes can take their inputs from raw
data or from other nodes, and their output can
likewise be fed to other nodes or can represent a
final result. The weights (rules by which nodes
change their inputs into outputs) can gradually
be updated through a process known as back-
propagation, which trains the network’s output
towards some specified ideal.

A neural network’s nodes are organized into
layers, in which each node in layer n is connected
to each node in layer n+1. When the concept of
a context layer is introduced—that is, when part
of the network’s input on each time step is the
values of its hidden-layer nodes from the previ-
ous time step—the network gains the ability to
’remember’ what its weights were in the past,
and the computational power of the network be-
comes truly impressive—good enough to learn a
variety of tasks that would be extremely difficult,
if not impossible, to engineer by hand.

It is our belief that among the tasks that can
be learned by a neural network is that of de-
ciding when an attack is taking place against a
computer system. By feeding the network in-
put that represents some important features of
a particular event on the system, we can train
the network to recognize events which are likely
part of an attack. Furthermore, thanks to its
contextual memory, the network can take the
events seen previously into account when mak-

ing its classification. The primary task for us as
researchers, then, is to properly select features
from the thousands of metrics for determining
what is happening on a computer system, and
present them to the network in such a way that
it can make meaningful abstractions and learn
the characteristics that define an attack.

1.3 Pros and Cons of Neural Net-
works

A neural network has several advantageous char-
acteristics that make it an attractive choice for
the intrusion detection problem. It is highly
robust—resistant to the noise which will in-
evitably crop up in any real dataset. It is also
fast enough (once its training is complete) to con-
ceivably run in real-time on top of a real com-
puter system. Its outputs are not limited to a
simple “yes” or “no”: they can be probabilistic,
and they can be used to sort inputs into arbitrar-
ily many separate categories. Most importantly,
perhaps, a neural network has the ability to de-
tect novel attacks, that is, attacks it was never
been exposed to during its training. Because it
works by creating and refining abstractions from
raw data, a neural network learns not just what
is an attack and what is not, but what makes an
attack an attack.

The neural network approach does have a few
significant disadvantages. First, its ability to
learn a task is entirely dependent on the input
data; as the saying goes: garbage in, garbage
out. But this problem is made far worse by
the notorious “black box” nature of neural net-
works: because it is difficult for a human analyst
to explain the neural network’s behavior in log-
ical terms, it is possible that the network is not
learning the same problem that its users think
it is.2 This black box problem can only be over-

2For example, if the intent is to learn to distinguish

nouns from verbs in English sentences, but all the nouns

in the training data happen to start with an ’S,’ then the

network is likely to learn to distinguish words that start

with ’S’ from other words—and perform very poorly when

exposed to new data.

28



come through careful feature selection and rig-
orous training on a wide variety of data.

On the whole, we believe a neural network
to be well-suited to the intrusion-detection task.
The key benefit of a neural network over other
types of IDSs, even other machine-learning-
based IDSs, is its ability to abstract away from
its particular inputs to learn their general char-
acteristics and thus correctly classify new inputs
that it has never seen before. In the world of
computer security, when new attacks–which are,
crucially, not much different from old attacks ex-
cept in particulars—constantly arise, the ability
of a neural network to learn to solve this type of
problem is enormously appealing.

2 Previous Research

Intrusion detection systems have in recent years
been divided into two groups: those which per-
form anomaly detection—also called behavior-
based systems and those which perform mis-
use detection–also called knowledge-based sys-
tems [DDW99]. Misuse detection systems at-
tempt to determine whether an attack has oc-
curred by scanning the system’s audit data for
occurrences of known attacks. Anomaly detec-
tion systems rely instead on a statistical analysis
of the system’s behavior, signaling out anoma-
lous activity as likely attacks. Each approach has
its drawbacks, the most important being that
misuse detection systems cannot detect intru-
sions which do not match the profiles in their
set of known attacks, while anomaly detection
systems can potentially erroneously classify ac-
ceptable behavior as an attack, or conversely
may mistake attacks for legitimate use. Ma-
chine learning approaches have been suggested
for both types of intrusion detection system.

In 1997 Lane and Bradley attempted to build
a learning system for anomaly detection [LB97].
Their objective was to learn a profile for each
legitimate user in the system, and then exam-
ine future actions by the users, using the learned
profile to determine if an anomaly had occurred.

User profiles were comprised of sequences of ac-
tions (information about command names, be-
havioral switches, and number of other argu-
ments for each command each user entered at the
shell prompt). Once the profiles were built, each
subsequent sequence was compared against the
appropriate user’s profile; a similarity function
determined if the new sequences were normal or
abnormal. While the authors may be right to
believe their system shows promise, their results
are based on data from only four users. It is also
worth noting that the system is not truly a learn-
ing system, as it makes no attempt to generalize
from its input—it simply compares sequences it
has seen to new sequences, in a deterministic way
that is defined by the authors, not the system it-
self.

Ghosh, Schwarzbard, and Schatz’s 1999 pa-
per examines three anomaly detection systems,
the last of which is a true learning system which
employs a neural network to detect anomalies
[GSS99]. The authors collected audit data from
their network using Sun Microsystem’s Basic Se-
curity Module, a built-in auditing tool on Solaris
machines. They then tested three techniques
on their ability to correctly identify anomalous
data: an equality matching algorithm, a simple
feed-forward backpropagation neural network,
and a simple recurrent network (Elman net).
Each system performed better than the one be-
fore, and the authors claim that the Elman net
could detect 77.3% of intrusions with no false
positives, and 100% of intrusions with “signif-
icantly fewer false positives than either of the
other two systems.” This result demonstrates
the potential of a neural network solution to the
intrusion detection problem and encourages fur-
ther research into the performance of Elman nets
at the intrusion detection task.

Another application of neural networks is pre-
sented in Cannady’s 1998 paper [Can98]. The
author mentions the primary shortcoming of
rule-based systems for misuse detection, namely
that their set of known attacks is extremely un-
likely to be complete, and proposes a misuse de-

29



tection system which utilizes a neural network
to learn what characteristics are present in an
attack, and then flag future events as attacks or
not. The system was trained on a set of data rep-
resenting network packets, some of which were
known to be legitimate and some of which were
known to be attacks. When it was presented
with another set of similar data that had not
been available to it during training, the network
correctly identified packets as attacks or not.
This result suggests that not only can a neural
network learn to identify anomalous behavior, it
can also learn the characteristics that are shared
by various attacks and apply that knowledge to
detect system misuse.

3 Our Experiment

3.1 The Network

To implement our neural network, we used
the tools provided by Pyrobot, a Python li-
brary [BKea]. We set up a standard simple re-
current network with three fully connected lay-
ers: input, hidden, and output. (See Figure ??.)
The input layer consisted of three components:
the audit data, a standard contextual memory
layer (i.e. a copy of the previous step’s hid-
den layer) and a per-process contextual memory
layer (a copy of the hidden layer from the last
time step in which the data came from the same
process it is currently coming from). The hidden
layer had N nodes each, and thus each context
layer had N nodes also. The output consisted of
a single node, which we refer to as “the classifi-
cation bit” (although in truth it is a real value
between 0 and 1, not a binary 0 or 1). The clas-
sification bit indicated the presence or absence of
an attack; values below a parameterized thresh-
old corresponded to “not an attack,” while values
above another threshold meant “attack.”

3.2 Data Gathering and Pre-
Processing

The first stage of our experiment involved collec-
tion of data using the Audlib tool. Two datasets
were created: a training set and a testing set.
The training set consisted of data that would
be used to train the neural network to identify
attacks. The testing set consisted of data that
would be used to test the performance of the
neural network on novel data. Each dataset con-
tained examples of both normal system usage
and attacks. To generate attack data, we used a
suite of attack tools from www.metasploit.com.

Next we parsed the raw data to process it into
a form suitable for use by a neural network. We
transformed the data into a set of real-valued
inputs. The features available to the neural net-
work were:

• Library Call Name (hashed, normalized to range [0,1])

• For each argument to the system call:

– argument size

– argument type

– argument value (strings are hashed; all values normalized)

• PID of calling process (normalized to range [0,1])

• PID of calling process’ parent process (normalized)

• Real UID of calling process (normalized)

• Effective UID of calling process (normalized)

• Saved UID of calling process (normalized)

• Real GID of calling process (normalized)

• Effective GID of calling process (normalized)

• Saved GID of calling process (normalized)

To avoid inadvertently teaching the neural
network to learn that specific UIDs are associ-
ated with attacks, we made sure that there was
no UID which appeared only in attack data. In
the real world, this might not be the case; there
might in fact be some user id which was only
used by an attacker. But it is far more likely
that an attacker would impersonate a legitimate

30



Each process
Copied for

Per−Process Context Audit Data Input Contextual Memory

Classification

Hidden Layer

Copied on each network step

Figure 1: The network architecture.

user (or superuser) and we had to be sure that
our IDS could detect this type of activity.

3.3 Training

Once this pre-processing was complete, we could
begin training the neural network. Using the
timing information from the Audlib tool, we sent
input data to the network in chronological order
(note that the network itself had no access to
the time stamps). The network was trained to
output a 1.0 on events known to be an attack
and a 0.0 on events known to be not an attack.3

To train the confidence bit, we simply told the
network to try for a value of 1.0 when its clas-
sification bit matched the expected value, and
0.0 otherwise. The network was trained until
its performance on the training data reached an
acceptable level of accuracy. To prevent over-
training (the phenomenon of the network learn-
ing its training data too specifically, thus making
it unable to evaluate novel data), we periodically
turned off learning and tested the network on the
testing data; if its performance on this data was

3There is a small but non-zero chance that some of our

events were mislabeled in the training data, because we

have no guarantee that an attack was not taking place

against the system while we were collecting data. There

is no evidence of such an attack taking place, however.

We believe that the only attacks present in the data are

those that we created ourselves.

better than ever before, we saved the network’s
nodes’ weights to a file. Thus the file saves only
the weights which performed best on the inde-
pendent testing data.

4 Results (or lack thereof)

We defined an “epoch” as the amount of time it
took to train the network once on each piece of
data in the training set. We trained the network
for as many epochs as possible before stopping
it to evaluate our results. When we did begin to
evaluate the results, we found that the network
reported a 100% accuracy on its input after the
first epoch—that is, the network thought that
it perfectly classified each piece of data. Obvi-
ously this result is highly unlikely. We are forced
to conclude that either our network implementa-
tion or our data is flawed, and therefore have no
meaningful results to report.

It should be noted that, even had this unex-
pected bug not occurred, any results from our
current data would be preliminary at best. We
are confident in the quality of our normal (i.e.
non-attack) data, but our attack data, which
consists of merely running (unsuccessfully) some
standard attack tools downloaded from the In-
ternet, is probably not sufficiently varied to pro-
vide a useful basis for the network to learn about
attacks in general.

31



5 Directions for Future Work

This experiment demonstrates nothing conclu-
sively about the viability of neural network-
trained misuse detection systems. A more di-
verse set of attack data is required before a
strong conclusion can be made. Thus the first
step toward extending this experiment in the fu-
ture would be a thorough collection of attack
data from as many sources as possible. The
term “critical mass” is a useful one: a neural net-
work must have enough good input data to learn
something meaningful about the general classes
of data it encounters, but after a certain point,
no new data must be collected because the neu-
ral network will have learned everything it can
about the problem. So we are hopeful that the
classic computer security problem of the hack-
ers remaining “one step ahead” can be overcome
with enough effort. Collecting new attack data
also has the side benefit of stress-testing the rel-
atively new Audlib system. Additionly it would
be much better to collect enough attack data
to make a significant percentage of the train-
ing data attacks, in order to prevent catastrophic
forgetting4.

An ideal way to collect this attack data would
be through use of a Honeypot5. This provides
a diverse set of attack data with minimal effort
from the researcher, as well as data on common
types of misuse, and has the benefit of recording
the actual actions of hackers, worms, and viruses
in the wild, rather than the simluated attacks we
used in this experiment.

Once a suitable corpus of input data is gath-
ered, the experiment should be run again in the
same manner as described in this paper. Ideally
multiple neural networks could be trained simul-
taneously with varied network parameters, since
most of the ideal values for any given parameter

4A pheonomenon in which a neural network learns a

task, then after training on a sufficiently large number

of inputs of a different nature, no longer succeeds at the

original task
5A Honeypot is a computer with no legitimate use—

any activity on it must therefore be an attack

of the network (such as the number of hidden
nodes, the learning rate, and the momentum, if
any) are determined experimentally on a case-
by-case basis.

Finally, the viability of a neural network which
provides more detailed information about the at-
tacks it identifies should be explored. In the cur-
rent experiment, the network outputs only one
value, giving a “yes/no” answer for the question
“Is this library call part of an attack?” But a
neural network could theoretically be trained to
perform a much more complicated task, such as
classifying the inputs into N distinct categories
based on what kind of attack they were associ-
ated with. An IDS which not only signals that an
attack has taken place but also identifies some-
thing about the nature of the attack would, one
imagines, be quite useful, and the current ex-
periment should be extensible to this problem
with relative ease—provided that the input data
is carefully classified as it is collected, either by
a human expert who knows what type of behav-
ior to expect from a given attack, or by another
IDS which has proven to be adept at identify-
ing the most common attacks. Again, the col-
lection of attack data is a time-consuming one,
but, thanks to the neural network’s power of ab-
straction, the task will have a definite (though
perhaps not well-defined) end.

6 Acknowledgements

Thanks to Prof. Ben Kuperman for the Audlib

tool and numerous helpful suggestions and com-
ments; Prof. Lisa Meeden for the Pyrobot library
and for introducing us to neural networks; the
Swarthmore College class of 2006 Computer Sci-
ence Majors; and everyone who allowed their ac-
tivity on the system to be logged for our use.

References

[BKea] Douglas Blank, Deepak Kumar, and
et al. Pyro: A python-based versatile

32



programming environment for teach-
ing robotics.

[Can98] J. Cannady. Artificial neural net-
works for misuse detection. In Pro-
ceedings of the 1998 National Infor-
mation Systems Security Conference
(NISSC’98) October 5-8 1998. Arling-
ton, VA., pages 443–456, 1998.

[DDW99] Herve Debar, Marc Dacier, and An-
dreas Wespi. Towards a taxonomy
of intrusion-detection systems. Com-
puter Networks, 31, 1999.

[Elm90] Jeffrey L. Elman. Finding structure
in time. Cognitive Science, 14(2):179–
211, 1990.

[GSS99] Anup K. Ghosh, Aaron Schwartzbard,
and Michael Schatz. Learning pro-
gram behavior profiles for intrusion
detection. In Proceedings 1st USENIX
Workshop on Intrusion Detection and
Network Monitoring, pages 51–62,
April 1999.

[Kup04] Benjamin A. Kuperman. A Catego-
rization of Computer Security Moni-
toring Systems and the Impact on the
Design of Audit Sources. PhD thesis,
Purdue University, West Lafayette,
IN, 08 2004. CERIAS TR 2004-26.

[LB97] T. Lane and C. E. Brodley. An appli-
cation of machine learning to anomaly
detection. In Proc. 20th NIST-NCSC
National Information Systems Secu-
rity Conference, pages 366–380, 1997.

33



Proceedings of the Class of 2006 Senior Conference, pages 34–44,
Computer Science Department, Swarthmore College c©2005

Rabbitstew: A Robot Simulator with Variable Morphologies

Ethan G. Jucovy

December 14, 2005

Abstract

I propose to design a realistic physical sim-
ulator for robots in Python which can easily
use and manipulate automatically generated
as well as designed robot morphologies. Fol-
lowing the completion of this simulator I pro-
pose to evaluate the relative strength of co-
evolutionary methods to conventional evolu-
tion in robot bodies using a genetic process
to evolve creatures in simulation to perform
a simple competitive task. I will allow the
physical structures of one population of robots
to evolve along with their control mechanisms
while a second population remains in a fixed,
human-designed body, and the relative suc-
cesses of these two populations will be com-
pared. The present paper describes my long-
term goals and gives the broad implementa-
tion details of the proposed simulator.

1 Motivation

In most robotics research, emphasis lies on
improving the “brain” or control procedures
in a fixed physical form. In evolutionary
robotics, control is generally “evolved” (fre-
quently in simulation) through multiple gen-
erations by evaluating individual fitness in a
large, non-uniform population and applying
selection, crossover, and mutation to the pop-
ulation until successful brains are developed.
For the most part, this process occurs in a sin-
gle human-engineered robot body which has
proven itself reasonably durable and success-
ful both in and out of simulation, this often

being a model of a commercially available re-
search robot.

In the past fifteen years, however, another
trend has been gaining popularity: that of
coevolution, or holistic evolution1, whereby a
robot’s morphology, as well as its control pa-
rameters, is allowed to vary and be subject to
selection pressures.

Several theories have been advanced to ex-
plain why holistic evolution is preferable and
results in more successful robots. Three ma-
jor theoretical lines of argument have been
advanced. The first is a simple argument
from biological observation: brains and bod-
ies evolved together in nature resulting in
carefully tuned creatures with brains specif-
ically designed to control the bodies they are
in, rather than general purpose brains that
can just as easily be used to control com-
pletely different bodies. The second, related
argument takes a developmental perspective:
holistic evolution avoids potentially constrain-
ing human bias and, proceeding by a large
number of small and gradual modifications to
both brain and body, allows a tighter coupling
of brain and body to emerge.[7] The third is
a theoretical mathematical argument which
will be discussed later. However—somewhat
surprisingly—no direct, side by side compari-
son has ever been done to confirm that holistic
evolution is, in fact, a better approach.

For this reason, I propose to compare holis-

1The accepted term in the literature is the former,
“coevolution”; however, following [9], I prefer the term
“holistic evolution” as more descriptive and less am-
biguous.

34



tic evolution to the conventional evolution of
control parameters in fixed morphologies2. I
will evolve two populations of robots in simu-
lation using a competitive selection method to
maximize evolutionary pressures: one popula-
tion will contain robots with varying, initially
random morphologies, and will be evolved
holistically; the other population will have
only its control structures evolved within a
fixed architecture modelled on a real, commer-
cial research robot such as an ActivRobots Pi-
oneer (www.activrobots.com) which is gen-
erally accepted to have good design and to
have the ability to perform well in a wide va-
riety of tasks.

By the nature of the competitive, variable
fitness function, which depends crucially on
the other members of the population, there
is no obvious, objective way to compare the
relative success of two populations of robots.
As a substitute, at periodic intervals through-
out the evolutionary process I will take the
best-performing members of each population
and compete them against each other to de-
termine which population has evolved “more
successfully.” As my sympathies do lie with
the proponents of holistic evolution, I expect
that, eventually, the holistically evolved pop-
ulation will outperform the other, perhaps by
quite a consistent and wide margin, though I
expect that the opposite will be true during
the early stages of the evolutionary process.

In order to perform this experiment I will
need a simulator which allows robot mor-
phologies to be specified easily and modified
automatically without additional code com-
pilation or intervention from the user. Un-
fortunately, no such simulators are currently
available. Therefore my first step must be to
develop a simulator which will allow me to run
this experiment.

In the present paper I describe the details
of both my proposed simulator, the Robotic

2For lack of a better term, I will refer to this as
“conventional” evolution.

Artificial Brain/Body-Intertwined Simulation
Toolkit and Evolution Workshop, or Rabbit-
stew, and of the experiment that I will per-
form on the simulator. In the first section
I discuss related work in the field of holis-
tic evolutionary robotics, and I describe the
present state of commercially and freely avail-
able robot simulators; in the second section I
give the proposed implementation details of
both the physical simulator itself and the sep-
arate three-dimensional graphical display pro-
gram; and in the final section I describe the
experiment which motivates the design of the
simulator.

2 Related Work

2.1 Holistic Evolution Research

Salmon[9] offers a more complete overview of
work done on holistic evolution and summa-
rizes some of the empirical and theoretical ar-
guments in favor of holistic evolution.

2.1.1 Proof of Concept

Karl Sims[10, 11] successfully demonstrated
holistic evolution, essentially as a proof of con-
cept; starting with completely random mor-
phologies, spreading control structures across
the robots’ bodies, and giving the robots a
competitive task to complete, he produced a
number of interesting robots with widely vary-
ing morphologies, many of whose strategies
in the competition were essentially quite sim-
ple and depended crucially on their particular
physical structures in ways which convention-
ally evolved robots could not have developed
in a fixed form.

Sims evolved five groups of creatures, each
with a different fitness metric: one group was
evolved to quickly take control of a block in
the center of an arena and prevent an op-
ponent creature from doing the same; one
group was evolved to locomote by swimming
in an underwater environment; one group was

35



evolved to walk on land, another to hop in
a low-gravity world, and another to quickly
follow a point of light. However, he did not
compare this in any way with non-holistically
evolved robots as his motivation was primar-
ily to create thought-provoking computer art
and to demonstrate the feasibility of holistic
evolution rather than its advantages.

Thomas Ray[8], in a follow up to Sims’
work, implemented a similar procedure, re-
placing the automated fitness selection func-
tions of the original study with ratings pro-
vided by human observers to select for in-
creased aesthetic and emotional appeal of the
resulting reatures.

Somewhat troublingly, Ray estimates that
up to 90% of over 300 “interesting genomes”
that resulted, many of which were able to
swim and crawl successfully, were found by
the random generation which initializes a pop-
ulation. However, he does say that evolu-
tion improved his creatures, and it is unclear
whether the 90% he cites were found purely

by random initialization or whether some they
were enhanced by at least some evolution.

Furthermore, Ray was selecting for sub-
jective aesthetic qualities more than for sta-
bility and success at a well-defined task in
a physical environment; indeed, one of the
creatures he selected for reproduction had an
unfortunate tendency to explode under the
strain of its own internal forces. It is likely
that, with more physically challenging selec-
tion pressures, the importance of evolutionary
processes would increase while the likelihood
of finding successful individuals purely by ran-
dom search would decrease significantly.

Pablo Funes and Jordan Pollack[6] provide
independent supporting evidence for the po-
tential of physical structure evolution in ad-
dition to control evolution. To demonstrate
that physical structure can effectively be gen-
erated by a genetic process, they evolved
passive objects such as bridges, cantilevers,
and crane arms in simulation using simulated

Lego3 blocks. Perhaps confirming the de-
velopmental argument that undirected search
techniques such as simulated evolution re-
move restrictive human biases, their resulting
structures were often unusual and counterin-
tuitive, but perfectly functional even when re-
produced with physical Lego blocks.

2.1.2 Advantages of Holistic Evolution

Providing some evidence of the value of holis-
tic evolution, Balakrishnan and Honavar[1]
performed a semiholistic evolution in a very
limited, idealized environment, where fitness
measures were fixed based on success at
a block-pushing task. In their first trial
they performed conventional evolution of neu-
ral networks in a fixed structure: a robot
with eight non-intersecting short-range sen-
sors. In subsequent trials the number, range
and placement of sensors on the robot could
be modified during the evolutionary process.
Using this limited holistic evolution, perfor-
mance as measured by the static fitness func-
tion did not drop, and, interestingly, the num-
ber of sensors was generally minimized despite
no pressure for efficiency being built in. In
addition, when sensor range was evolved in
addition to number and position, peak per-
formance increased while sensor number still
remained relatively low. These results suggest
that holistic evolution may help robots dis-
cover solutions that are both more effective
and more efficient than would be discovered
with conventional evolution in a fixed form.

Further evidence that holistic evolution can
improve efficiency was provided by Bongard
and Paul[3], who also used a limited form of
holistic evolution to show that performance
and efficiency can be improved by allowing
evolution to modify physical structure. In this
case, variable parameters in the morphology
consisted of the lengths of the body segments
and the dimensions and placement of weights
on the legs of a biped robot whose task was

3Lego is a registered trademark of the Lego group.

36



to walk as far as possible in a given amount
of time. The populations with variable mor-
phologies both performed better on average
and had higher peak performances than those
with static morphologies, providing additional
empirical support for holistic evolution; how-
ever, as in Balakrishnan and Honavar’s work,
the holistic evolution performed was fairly
limited.

Conrad[4], meanwhile, provided a theoret-
ical argument in favor of holistic evolution,
called the extradimensional bypass. Any com-
plex fitness landscape will contain peaks and
valleys, and two adaptive peaks which may
be separated by a valley in a low-dimensional
landscape may be connected by an adaptive
ridge if additional dimensions are added to the
landscape. As a holistic approach to evolution
includes more free parameters than a conven-
tional approach, the fitness landscape consists
of many additional dimensions; so adaptive
ridges may exist between what would be peaks
in a lower dimensional (fixed body) manifold
of the same space.

Stober and Gold[12] performed a variety of
experiments, with tasks ranging from wall fol-
lowing to object gathering, to evaluate the po-
tential advantages of evolving neural network
morphologies, as opposed to merely evolving
the weights of the network as in conventional
evolution. They found, however, that per-
formance did not improve significantly when
network morphologies were allowed to evolve,
and in fact successful strategies found by the
two populations were quite similar.

2.2 Existing Simulators

There exists at present no simulator up to the
task of performing holistic evolutionary devel-
opment. Sims’ work was done on a massively
parallel architecture with custom code that
cannot be made publically available. Ray,
Bongard and Paul used MathEngine, an ap-
parently now defunct real-time physical simu-
lation package produced by MathEngine PLC,

Oxford; Bongard’s more recent research and
that of Pollack have used code which em-
ployed the Open Dynamics Engine and are
not publically available.

The open source Player/Stage package does
contain a three dimensional rigid body simula-
tor, Gazebo, designed in ODE and OpenGL,
as well as Player itself, a network server for
robot control. However, specifying a robot
morphology for use in Player and Gazebo
is slow and labor intensive; a Player de-
vice must be developed to specify how the
robot interacts with its sensors and actuators,
while a Gazebo model must be hard-coded
and compiled to describe the robot’s physical
body. Other simulators are equally problem-
atic: Webots and JRoboSim require users to
describe robots similarly to the Player/Stage
project and are not intended for morpho-
logical evolution; the Graphical Workshop
for Modelling and Simulating Robot Environ-
ments (Gwell) and Robsim only allow robot
models to be hand-created by the user in a
visual runtime environment; Easybot requires
precompiled libraries to specify robot con-
trollers and does not perform collision detec-
tion or other physical modelling.

The Laboratory of Intelligent Systems
(LIS) at the Ecole Polytechnique Fédérale de
Lausanne has been developing several evolu-
tionary robotics tools including Enki, a fast
two-dimensional simulator capable of simulat-
ing large groups of robots; Teem, a software
framework for evolutionary robotics experi-
ments; and Goevo, an application for evolv-
ing neural network controllers for real or sim-
ulated robots. Unfortunately LIS does not
currently have any tools available for evolving
robot morphologies, and the pieces of their
evolutionary framework that do not directly
rule out morphological evolution are not de-
signed with this in mind.

Table 1 contains download and documen-
tation locations for the software mentioned
above.

37



3 Rabbitstew

3.1 Tools

I will write the simulator in Python. For the
physics of my simulator I will use PyOde, a
set of Python bindings for the Open Dynam-
ics Engine (ODE), a native C library for rigid
body dynamics with built in support for fast
collision detection and joint connections be-
tween bodies. ODE is quickly becoming a
standard library for simulation of evolution-
ary robotics and will be well suited to this
task. I will implement a visualization of the
simulation separately using the Visual module
for Python. Neural network implementation
will be carried out using the Conx module of
the Pyro programming environment. See Ta-
ble 1 for locations of online resources for this
software.

3.2 Simulator Implementation

Rabbitstew is composed of two major parts:
the data structures which fully describe robot
genotypes for storage and manipulation, and
the physical instantiation of the robots active
in the simulation. Passive features in the sim-
ulation environment are not considered to be
a separate category but are instead treated
identically to robots; a passive structure such
as a block or a wall can be defined simply by
creating a robot with no brain.4

3.2.1 Robot Genotypes

The design of robot genotypes in Rabbitstew
is broadly based on that described by Sims[11]
with elements of Ray’s[8] implementation.

An individual robot genotype will be rep-
resented by a directed graph which is com-
posed of Nodes and Connections including an
arbitrary root Node. Each Node represents

4This may be changed in a later release of the sim-
ulator if it is found to be unsatisfactory; its major
advantage, and the motivation for this organization at
least in the initial release, is its simplicity.

one body unit and contains a Segment and a
list of Connections. Each Connection repre-
sents a physical attachment between the two
body units specified in the parent and child
Nodes and will contain a child Node, a rela-
tive position, orientation, and scale, two bits
representing joint type (hinge, ball, slider or
fixed), and a direct-recursive limit parameter
since circuits are permitted in the graph. To
prevent infinite indirect recursion, robot phe-
notypes will have a universal, externally im-
posed, user defined size-ratio limit, a restric-
tion on the number of body segments relative
to the size of the genotype.

A Segment will consist of two bits repre-
senting shape (box, sphere, or cylinder) and
physical dimensions for the Segment, with the
number and type of dimensions dependent on
the particular shape of the Segment. Shape
dimensions are relative and will be normal-
ized to have identical volume; absolute dimen-
sions of a given Segment will determined by
a combination of the parent and child Seg-
ments’ dimensions and the scale factor of the
connection between them.

Each Segment will also contain a Brain
which is represented in genotype as a directed
graph of neural units with graph connections
storing the network weights between units.
Three types of neural units will be available:
Sensors, which get input from the environ-
ment, Effectors, which send torque outputs to
the parent Joint of the Segment in which they
are located, and Neurons, which are purely
processing units with inputs from and out-
puts to other neural units. Available Sensors
will include binary contact Sensors which are
active if and only if the associated Segment
is currently in contact with any other phys-
ical body and sets of three direction Sensors
which give the normalized direction from the
center of the associated Segment to a particu-
lar source (available sources will be the center
of the target and the center of the root Seg-

38



Figure 1: A sample morphological graph (attributes and parameters, including the single-level recur-
sive limit parameter for the circuit, not shown) and the resuling structure.

e e e

nnnnnn

s s s s s s

gn

Figure 2: A graph with embedded and global computational units (Neurons, Sensors, Effectors)
shown. Effector outputs to local joint connections are represented by lines to the relevant connection.

39



ment of the opponent in the competition).5

A global Brain, not associated with any
particular Segment, will also available; this
Brain will consist entirely of Neurons but can
be connected to any localized neural units to
permit centralized control. With the excep-
tion of this central Brain, all individual neu-
ral units in a Brain can only be connected to
other units in the same Brain.

Note that there are no constraints on the
number or types of neural units in a Brain
aside from the limitation that the central
Brain, if it exists at all, be composed only
of Neurons. Therefore it is possible to create
a fully distributed robot controller, by using
no centralized Neurons at all, or a fully cen-
tralized one, by limiting the embedded neural
units only to Sensors and Effectors, in addi-
tion to hybrid controllers with some localized
and some centralized processing.

3.2.2 Physical Structures

When the simulation starts, each robot which
will be active in the competition is synthesized
from its genotype; when the simulation is ter-
minated the synthesized robots are destroyed.
While this can result in a considerable num-
ber of redundant graph traversals if a robot is
active in multiple simulations, the redundant
computation is only done at the initialization
of the simulation and therefore should have no
effect on individual simulation performance,
and the the memory saved by “cleaning up”
robots between simulations, which would af-
fect simulation performance if too much mem-
ory was used, more than offsets the additional
time to resynthesize robots.

5Additional Sensors and Effectors could be made
available later and might result in more interesting
and varied behavior, but for simplicity the initial sets
of Sensors and Effectors will be limited to these few.
Additionally, the direction Sensors should and will ul-
timately be generalized to give the direction to any
arbitrary (fixed or moving) target for a more general-
purpose simulator that can be used for other experi-
ments.

Synthesis of a robot proceeds from the des-
ignated root Node. In an attempt to increase
the number of graph nodes that are actually
synthesized into at least one body part be-
fore the size-ratio limit halts the process, a
breadth-first search will be used to traverse
the graph. With this method, however, a low
size-ratio limit combined with high recursive
limit parameters on connections could still re-
sult in creatures with some graph nodes that
are not synthesized into any body parts. This
is intended to make the evolutionary process
more complex and realistic, since many ge-
netic features in nature are passed down with-
out manifesting in every generation.

It should be noted that this approach still
results in a direct, one to one mapping be-
tween genotype and phenotype; such a direct
mapping has been argued[5] to be problem-
atic in evolutionary processes as it ignores the
many stages of growth, does not scale well
to large organisms, and fails to impose con-
straints of symmetry, which has been demon-
strated to increase organisms’ efficiency[2].
Regardless, I feel that the current model is
a reasonable compromise between genotype-
phenotype complexity and simulator simplic-
ity.

At each Node up to three ODE objects are
created and initialized: a Body, which pri-
marily contains an object’s mass properties; a
corresponding Geom object, which describes
the object’s spatial extent for collision detec-
tion; and, for all Nodes but the root, a Joint
between the object’s Body and the Body of
the parent Node, which physically links two
objects and provides motion constraints be-
tween them. Each robot will be stored in a
list of Geoms and an ODE JointGroup. The
Geom class has a function which returns the
Body to which it is linked so no separate list
of Bodies needs be maintained.

At each Node the corresponding neural net-
work will also be synthesized from the local
graph describing a Brain; following the syn-
thesis of individual units the central Brain will

40



be constructed as well. Each Brain will be
implemented in the physical simulation as a
standard neural network.

3.3 Visualizer Implementation

At the start of a physical simulation the spec-
ifications of each robot are written out to a
data file for subsequent use by the visual-
izer. Each body unit of each robot is de-
scribed, in turn, first by a number specifying
the shape of the unit and then by that unit’s
absolute dimensions, which can vary from one
(for a sphere) to three (for a box) floating-
point numbers.

At each n timesteps during the simulation
(by default n = 1 but this can be overwrit-
ten by the user) the state of the simulation
is written to the data file. This consists of a
three dimensional position vector and an ori-
entation quaternion (both provided by ODE
accessor functions) for each ODE Body, where
the states of Bodies are given in the same or-
der as the initial data. A single small robot
with three body units, therefore, would yield
a state output of 21 single-precision floating-
point numbers per output cycle.

When the visualizer starts it will first read
in unit data, one unit at a time, creating a
three dimensional model of each unit using the
Python Visual module and storing the units in
a single list. Models will then be initialized to
the starting position and orientation given by
the first set of state data and all models will
subsequently be set visible. Visualization pro-
ceeds in a loop by reading in each set of time-
dependent state data and updating all models
accordingly until all data has been processed
or the visualization is terminated by the user.

For spheres and boxes, position in three di-
mensions is given directly by the first three
values of the 7-tuple representing a unit’s
state. Unfortunately slightly more computa-
tion is necessary for cylinders, as ODE repre-
sents a cylinder’s position by its center of mass
and the Visual module represents a cylinder’s

position by the central point at one end of the
cylinder. Orientation is determined from the
last four values which give the unit’s orienta-
tion quaternion q by setting the object’s axis
vector to the last three terms of the result of
the operation q

′
× (0, 1, 0, 0) × q and its up-

directional vector to the final three terms of
the result of the operation q

′
× (0, 0, 1, 0) × q,

where q
′ = (q0,−q1,−q2,−q3).

4 Long-Term Experiment

After the simulator has been developed, I will
run two evolutionary algorithms, one on a
population of randomly-generated morpholo-
gies and employing holistic evolution; the
other on a population with uniform, engi-
neered morphologies and evolving only the
weights of the neural network control struc-
tures.

I intend to use a all-versus-best two-at-a-
time competition6 similar to that of Sims[11],
where pairs of robots from the population will
be physically simulated as they compete in
a time-limited zero-sum game. The evalua-
tion of fitness I will use will be a ratio of the
two robots’ center-of-mass distances from the
center of the “world” after a short period of
simulated time; so robots would have to find
strategies both for quickly reaching the goal
point and for preventing their opponent from
doing so. This competitive, zero-sum fitness
function should result in fairly fast and dy-
namic evolution with a wide range in popula-
tions.

At periodic intervals throughout the evolu-
tionary process I will select the two or three
highest-performing members of each popula-
tion in the current generation and I will have
these “champions” compete, in the same task,
with one another. These interpopulation com-
petitions will have no effect on the evolution of

6Variations on competition size and structure are
of course possible and could be employed for follow-up
experiments.

41



Software URL

Easybot http://iwaps1.informatik.htw-dresden.de/Robotics/Easybot/

Enki http://lis.epfl.ch/resources/enki/

Goevo http://lis.epfl.ch/resources/evo/

Gwell http://diablo.ict.pwr.wroc.pl/\%7epjakwert/

JRoboSim iwaps1.informatik.htw-dresden.de/Robotics/JRoboSim/

MathEngine www.mathengine.com (website down)
ODE www.ode.org

Player/Stage playerstage.sourceforge.net

PyOde pyode.sourceforge.net

Pyro www.pyrorobotics.org

Robsim http://www10.brinkster.com/geniusportal/robsim.html/

Teem http://lis.epfl.ch/resources/teem/

Visual www.vpython.org

Webots www.cyberbotics.com

Table 1: Software locations.

each group; they will be used simply to mea-
sure and compare the progress of each popu-
lation.7 In this manner I will evaluate the rel-
ative success of each population as compared
to the other at different stages of evolution.

I predict that in the early stages of evo-
lution the holistically evolved population will
perform far worse than the stable-body pop-
ulation, by virtue of the latter’s having an
effective and functional body to work with;
the latter group essentially has a significant
head start by having a pre-engineered body.
However, I predict that this will eventually
reverse, and that the holistically evolved pop-
ulation will ultimately outperform the stable-
body population, for several reasons.

First, by having their brains and bodies de-
velop simultaneously, the holistically evolved
robots will be able to take full advantage
of their physical structure and will be able

7Some obvious alternatives include periodically pit-
ting the best performer of each population against each
of the members of the opposite population at the same
generation, or competing each member of the two pop-
ulations; best vs. best has the (dubious) advantages
of simplicity and quicker processing time, but other
methods could be used for additional follow-up analy-
sis or for further experiments.

to evolve relatively uncomplicated strategies
that hinge on the particular constraints and
idiosyncrasies of their bodies, and they will si-
multaneously be able to modify their physical
structures to complement and build upon the
strategies that they have already developed.

Second, their population will be consid-
erably more variable and therefore selection
pressure to find general-purpose and adapt-
able strategies may be stronger than in the
stable-body population. And third, as posited
by Conrad[4], the extra dimensions of the evo-
lutionary search space may allow for addi-
tional “ridges” in the solution landscape con-
necting what in a lower-dimensional space
would be two separated peaks.

Following this experiment a number of av-
enues for further study will be available, in-
volving modifications of a number of parame-
ters in the experiment. In addition to varying
the competition structure and the sensors and
body parts available to the evolving robots,
a variety of tasks could be employed besides
the proposed “control the center” goal. Un-
fortunately it is quite difficult to predict the
effects of any of these modifications, so I in-
tend to consider them only after completing

42



the present experiment.

5 Acknowledgements

Many thanks to Josh Bongard, Douglas
Blank, Claudio Mattiussi, Jordan Pollack,
John Rieffel, Branen Salmon and Karl Sims
for their support and their advice regard-
ing presently available simulators. Jordan
Pollack, John Rieffel and Josh Bongard also
referred me to the Open Dynamics Engine.
As noted above, many of the implementa-
tion details of my simulator are due to Karl
Sims; much of the organization of the project
resulted from recommendations by Branen
Salmon. Thanks also to Cortland M. Setlow
who explained the method described above for
determining visual orientation by quaternion
multiplication, and finally to Ben Kuperman
for his frequent encouragement and review of
my project.

References

[1] Karthik Balakrishnan and Vasant
Honavar. On sensor evolution in
robotics. In John R. Koza, David E.
Goldberg, David B. Fogel, and Rick L.
Riolo, editors, Genetic Programming

1996: Proceedings of the First Annual

Conference, Stanford University, CA,
USA, 28–31 1996. MIT Press.

[2] Josh Bongard and Chandana Paul. In-
vestigating morphological symmetry and
locomotive efficiency using virtual em-
bodied evolution. In J.-A. Meyer et al.,
editor, From Animals to Animats: The

Sixth International Conference on the

Simulation of Adaptive Behaviour, 2000.

[3] Josh C. Bongard and Chandana Paul.
Making evolution an offer it can’t refuse:
Morphology and the extradimensional
bypass. Lecture Notes in Computer Sci-

ence, 2159, 2001.

[4] Michael Conrad. The geometry of evolu-
tion. Biosystems, 24:61–81, 1990.

[5] Frank Dellaert and Randall D. Beer.
Toward an evolvable model of develop-
ment for autonomous agent synthesis. In
R. Brooks and P. Maes, editors, Artificial

Life IV Proceedings, Proceedings of the

Fourth International Workshop on the

Synthesis and Simulation of Living Sys-

tems, Cambridge, MA, 1994. MIT Press.

[6] Pablo Funes and Jordan Pollack. Com-
puter evolution of buildable objects. In
P. Husbands and I. Harvey, editors,
Fourth European Conference on Arti-

fial Life, pages 358–67, Cambridge, MA,
1997. MIT Press.

[7] Jordan B. Pollack, Hod Lipson, Gregory
Hornby, and Pablo Funes. Three gener-
ations of automatically designed robots.
Artificial Life, 7:215–23, 2001.

[8] Thomas S. Ray. Aesthetically evolved
virtual pets. In Carlo C. Maley and Eilis
Boudreau, editors, Artificial Life VII:

Workshop Proceedings, Portland, OR,
2000. Reed College.

[9] Branen Salmon. Embodied evo-
lution in a morphologically het-
erogeneous population of robots.
http://web.cs.swarthmore.edu/

~meeden/cs81/projects/salmon.pdf,
2003. Swarthmore College Senior
Seminar Project.

[10] Karl Sims. Evolved virtual creatures. In
Computer Graphics Annual Conference

Series, pages 15–22, July 1994.

[11] Karl Sims. Evolving 3d morphology and
behavior by competition. In R. Brooks
and P. Maes, editors, Artificial Life IV

Proceedings, Proceedings of the Fourth

International Workshop on the Synthesis

and Simulation of Living Systems, Cam-
bridge, MA, 1994. MIT Press.

43



[12] Jeremy Stober and Jonah Gold. Evolv-
able morphologies for robot con-
trollers. http://web.cs.swarthmore.

edu/~meeden/cs81/projects/

stober-gold.pdf, 2003. Swarthmore
College Senior Seminar Project.

44



Proceedings of the Class of 2006 Senior Conference, pages 45–52,
Computer Science Department, Swarthmore College c©2005

Sweeter Honeynets

Kenneth Patton

December 2005

Abstract

The honeynet is a new technology used in the
field of computer security for researching the ac-
tions of hackers. While honeynets have the po-
tential to give us great insight into the hacker
world, recent studies have shown that the rate
of data collection by honeynets is far from op-
timal. This paper first discusses the motivation
for using honeynets to track hacker’s activities
as well as a brief background on honeynets and
the various types of hackers in the world. Then,
solutions to the problem of increasing honeynet
traffic are presented. The primary solution that
the author develops is using a webserver as bait,
and the steps needed to implement this approach
are discussed in detail. Two additional meth-
ods are also presented as alternatives - advertis-
ing through hacker chatrooms and online con-
tests. The author concludes that all three of
these methods are feasible and intends to im-
plement them for experimental confirmation.

1 Introduction

With computer systems playing a larger role in
society today, computer security is now more im-
portant than ever to protect the confidentiality,
integrity, and availability of digital information.
Computer systems are also becoming increas-
ingly complex, making it difficult to insure sys-
tem security when hundreds of applications are
run on a regular basis with just as many running
in the background continuously. In addition, ap-
plication developers typically possess a release
and patch mentality in order to minimize the

time to market, increasing the number of soft-
ware bugs that external computer crackers can
use to compromise a host system.

Due to the prevalence of hackers on the in-
ternet today, we recognize the need to research
the methods that hackers use to compromise tar-
get systems. There are many different tech-
niques employed by hackers to compromise ex-
ternal computers; these range from code analy-
sis and the manual design of tools to the less
sophisticated downloading of automated scripts
from the internet. Ideally we would like to ob-
tain information about all the different types of
attacks that hackers employ, although the less
sophisticated attacks are generally more preva-
lent.

In order to track the actions of hackers, we
need a strategy for allowing hackers to do their
work while they are unknowingly observed. One
tool that is used to facilitate this is known as a
honeynet. In a honeynet, a single secure com-
puter monitors a group of insecure ”bait” com-
puters that are waiting to be compromised by
external hackers. While still a relatively young
technology, honeynets help facilitate research
into computer crimes because they present hack-
ers with an otherwise undisturbed environment,
which makes it simple to identify what traffic
and actions on a computer in the honeynet are
due to hackers.

There are typically two types of honeynets in
use today: production honeynets and research
honeynets. Production honeynets are simple
honeynets used to capture limited amounts of
information, often employed by companies to
help protect more valuable systems on a net-

45



work. Research honeynets are more complex
entities designed to capture as much informa-
tion as possible about the behavior of intrud-
ers. Research honeynets are typically not de-
signed to protect other systems on the network
in the short-run, but ideally benefit systems in
the future through analyzing the techniques that
hackers use to compromise typical machines. All
traffic on research honeynets is known to be in-
trusive in nature because they have no other in-
tended purpose, which makes it easier to analyze
a hacker’s behavior.

However, as research honeynets are typi-
cally unadvertised, they attract relatively low
amounts of traffic. In a recent study [1], the av-
erage amount of time it took an unpatched Linux
system connected to the internet to become com-
promised was approximately 3 months. While
data collected from individual break-ins is cer-
tainly valuable, with such sparse occurrences it
is questionable whether this is the best method
for collecting data. Instead, by making the hon-
eypots more visible through actively advertising
them, we can draw more hacker activity at the
cost of additional legitimate traffic. As an ex-
ample, by placing a webserver on a honeypot
and designing a simple but enticing website that
draws a small amount of web traffic, we present a
bigger target for typical hackers than an anony-
mous machine on the network. Unfortunately
this has the drawback that not all of the traf-
fic on the machine will be illicit, but since we
know exactly what traffic to expect it should not
be difficult to filter out attacks on the machine.
Standard web browsers that request valid pages
of the website will not be considered attack traf-
fic, but web requests for invalid pages and non-
http traffic will be considered attack traffic.

2 Background

2.1 Hackers

There are a number of different types of hack-
ers, each with different motivations and meth-

ods of attacking a remote computer. We clas-
sify as hackers individuals who, through direct
or indirect action, causes a machine to behave
in a manner other than intended by the owner.
Often this results in the hacker gaining control
over the system, but we still classify individuals
who make the machine behave abnormally but
do not gain control of the system as hackers (for
example, due to DDoS attacks). Here we try to
classify the different types of hackers that might
typically be encountered by a system on the in-
ternet and their motives. A more in-depth clas-
sification of hackers is presented by Marc Rogers
in [5].

The Accidental Hacker

An accidental hacker is a user who, without
previous intent, unknowingly compromises
or disrupts the normal behavior of a suppos-
edly secure computer. The user may realize
the result of their actions after the fact but
generally will not try to exploit the vulner-
ability that they found. Obviously such a
user has no prior motives, which makes it
difficult to attract these accidental hackers.
Generally if a system vulnerability can be
taken advantage of accidentally, it is a seri-
ous threat to the security of the computer
and be prone to intentional exploitation by
less scrupulous hackers. Since break-ins due
to accidental hackers are often due to glaring
security holes and occur sporadically, they
have little research value when focusing on
typical hacker threats.

Worm and Virus Creators

In general virus and worm designers do not
directly attempt to compromise particular
machines on the internet, but through their
actions they indirectly account for a portion
of system break-ins. Their motives are often
simply entertainment, but occasionally they
write viruses for a purpose - usually with
motives similar to those of blackhats. How-
ever, the automated nature of viruses and

46



worms cause them to attempt to compro-
mise machines in the same way every time,
making their actions very predictable.

”Script Kiddie”

”Script Kiddies” are relatively unskilled
hackers that use automated tools down-
loaded from the internet in order to attempt
to break into machines. These are the most
prevalent type of intentional hackers, but
generally their actions are easy to reproduce
and identify. ”Script Kiddie” motives typ-
ically range from simply the excitement of
doing something illegal to collecting botnets
for DDoS attacks and harvesting credit card
information.

Blackhat / Cracker

Blackhats, often called crackers, are experi-
enced hackers that are typically motivated
to break into a protected computer system
for personal benefit such as money or ac-
cess to sensitive data. As the most advanced
type of hacker, they generally have detailed
knowledge about system exploits and are
able to carefully take advantage of those ex-
ploits in order to gain full control of a sys-
tem. Blackhats motives can range from the
thrill obtained due to the challenge of hack-
ing a machine to disgruntled employees try-
ing to get back at an employer.

Whitehat

Whitehats are similar to blackhats, but dif-
fer in their motives for breaking into a
machine; while blackhats compromise ma-
chines for personal benefit, whitehats claim
to be ”ethical” and break into machines in
order to help make computer systems more
secure. The difference between whitehats
and blackhats can be narrow at times, with
whitehats on occasion breaking into ma-
chines in order to investigate blackhats, but
generally whitehats will leave less of a trace
on a compromised machine than a blackhat
would. Whitehats are often employed by

security companies and rarely act on their
own to compromise random hosts on the in-
ternet.

From a computer security standpoint, the
most valuable information we could obtain would
be the strategies used by blackhats / whitehats
to break into systems, followed by information
about typical ”Script Kiddie” exploits and toolk-
its, and lastly how viruses and worms penetrate
machines. Unfortunately, the traffic on an aver-
age machine connected to the internet will gen-
erally find more break in attempts in the reverse
order; worms are likely to generate the most,
albeit relatively simple, ”attack” traffic, while
”script kiddies” generally make up a much larger
percentage of attempted break ins than black-
hats. Regardless, we need a tool to investigate
the methods that these different sources employ
to compromise machines: a honeynet.

2.2 Honeynets

A honeynet is a collection of computers whose
purpose is to track everything that occurs on des-
ignated ”bait” computers, the honeypots. Hon-
eypots are not used for any particular function
on the network, but rather exist solely to be
broken into by external hackers. The goal of a
honeynet is to research the actions of hackers,
which is best accomplished on honeypots since
they contain essentially only attack traffic with
little background noise.

In a basic honeynet setup as seen in figure 2.1,
all traffic passing between local computers and
external computers on the internet must pass
through a honeywall. The job of the honeywall
is similar to a firewall, with advanced filtering
and logging capabilities. The honeywall may be
set up in one of two configurations: as a stan-
dard network bridge or using Network Address
Translation.

For the purposes of strictly research in a non-
production environment, the honeywall is best
set up as a network bridge because it allows for
multiple honeypots and the honeypots to appear

47



Figure 1: Standard Honeynet Setup

as standard machines on the network to hackers.
In an environment where the honeynet is set up
as a decoy to distract hackers from other critical
network resources, NAT can be useful because it
allows the honeypot to camouflage the produc-
tion machines. For example, a company could
put a webserver behind the honeywall and have
all communication on port 80 forwarded to it
while all other is forwarded to a honeypot. Over-
all it looks like the honeypot and the webserver
are the same machine, and a hacker will be dis-
tracted trying to break into the honeypot while
the webserver is fully secure. This allows the
company to analyze the hacker’s actions in ad-
dition to quickly highlighting attempts to break
into the webserver.

In general the honeywall will log all packets
that pass through it in order to correlate specific
streams of packets as an attack. In addition, the

honeywall will often receive data detailing what
users do on the local honeypots. Most honey-
walls will also have the ability to limit outbound
connections from the honeypots in order to pre-
vent a hacker from exploiting a honeypot for de-
nial of service attacks. Combining these features,
an administrator is often able to determine the
precise method that the hacker employed in or-
der to compromise a honeypot as well as identify
the intentions of a hacker based on his or her ac-
tions on the honeypot.

Although research honeynets provide an ex-
cellent means to track hackers, they suffer from
a major drawback: they are essentially passive
devices, waiting for hackers to stumble across
the honeypots. In a study study done by The
Honeynet Project [1], 19 unpatched Linux sys-
tems had an average life expectancy of 3 months
before getting compromised. While this may

48



be a good phenomena for the average computer
user, it becomes difficult to research the latest
hacker techniques if attacks occur infrequently.
In the same study [1] of Windows honeypots they
found that unpatched Windows machines gen-
erally have life expectancies measured in hours.
However, the short life expectancy of Windows
machines was due primarily to worms rather
than active hackers, which makes the attacks less
valuable as research material.

The results of these previous studies are for re-
search honeypots and it is expected that produc-
tion honeypots recieve significantly more traffic.
While we could consider this as one strategy to
attract more activity on honeypots, we recog-
nize that usually a company running production
honeypots in addition to other production ma-
chines will focus more heavily on security than
research capabilities. For example, in the event
that a company needs to decide whether to sac-
rifice forensics in order to get a production ma-
chine back up and running, we assume that most
likely the company will choose to sacrifice the
data in order to revive a machine that may be
crucial to their business. For this reason we fo-
cus mainly on standalone research honeynets and
what can be done to make them more attractive.

Overall our goals for research honeynets are

1. Increase number of attacks per unit time

2. Increase overall ”quality” of attacks

3. Increase variety of attacks

4. Minimize non-attack background traffic

5. Minimize overall cost of deployment

In the following sections we present strategies
that attempt to accomplish these goals.

2.3 Related Research

Lance Spitzner developed the idea of honeyto-
kens [2] that are similar to the concept of hon-
eypots but on a smaller scale. Honeytokens are

files on a system that are not meant to be ac-
cessed by anyone, but are developed to stand
out if a user is browsing the system looking for
interesting files. Accessing a honeytoken triggers
an alarm in the system that notifies the supervi-
sor about the illicit behavior, and is meant to be
used as a first line of defense against improper
insider activity. In this manner honeytokens are
meant to be components of an otherwise func-
tional production system, and differ from hon-
eypots that are meant as stand alone systems.

Another similar idea is the Catering Frame-
work [4] designed by Xuxian Jiang and Dongyan
Xu that ”caters” to the desires of hackers by an-
alyzing network traffic. This framework is de-
signed to dynamically modify honeypots to keep
services open that hackers are more likely to use;
the Catering Framework makes this distinction
by profiling the random network traffic received
by outside sources. Any random traffic that is
received is assumed to be illicit, and by keep-
ing track of the most prevalent types of network
traffic the framework determines what services
are best to run on honeypots. While the Cater-
ing Framework presents a good strategy for hold-
ing onto hackers that find the honeypot, it suf-
fers from the fact that it fails to draw in addi-
tional hackers that did not randomly encounter
the honeypot in the first place.

Maximillian Dornseif and Sascha May exam-
ined models of the cost versus benefit of running
a honeynet [3] and found that the cost of running
a honeynet can be modeled as C(t) = S + Mt
while the utility gained from the honeynet can
be expressed as U(t) = PtM/I, where S is the
initial startup cost, M is the maintenance cost
per unit time, P is the amount of utility gained
per attack, and I is a factor by which higher in-
vestments in the maintenance cost influence the
chance of being attacked. Under their model
we would like to minimize the overall cost while
maximizing the utility gained from the honeynet.
We see that in order to do this we would like
to minimize S in relation to M. However, their
model does not account for methods that arti-

49



ficially influence the chance of being attacked,
which would allow us to increase U(t) while not
significantly affecting C(t).

3 Improving Honeynets

3.1 Running a Webserver

The easiest method to increase traffic and the
visibility of a machine is to setup a webserver
that the outside world can visit. Then by reg-
istering a domain name and listing the machine
with search engines we can increase the overall
traffic on the machine. At first this may result
in just an increase in benign traffic, but in the
long run it provides hackers with another method
through which they can encounter the honeypot.

Here we present a brief description of the steps
necessary to setup a more enticing honeypot with
a webserver

1. Obtain webserver for operating system of
choice

The Apache HTTP Server is one of the
most common webservers on the internet
due to its powerful feature set, simple in-
stallation, and ease to maintain. In ad-
dition the Apache HTTP Server is freely
available for almost all commonly used
operating systems - setup is simple on
Windows and most UNIX variants, in-
cluding Linux, Mac OS and the BSDs.
Nearly all package based distributions pro-
vide precompiled versions of the HTTP
server, but complete sources are available at
http://httpd.apache.org/download.cgi and
can be configured and installed fairly simply
on any machines with an ANSI-C compiler.

Several versions of Windows and Mac OS
X also come with built in webservers for
those adverse to the thought of installing the
Apache HTTP Server. Mac OS X’s built
in webserver is apache with a more user
friendly interface. Window’s built in web-
server, Internet Information Services (IIS),

is fairly simple to set up and consists of
adding virtual directories to the default
website through Administrative Tools / In-
ternet Information Services.

2. Building the Website

The next crucial step in attracting hackers
is to design a site that has a tendency to
draw illicit behavior. While designing an
interesting site that brings in a lot of traffic
from average internet users is appealing, we
do not gain anything from users who visit
the site for legitimate purposes. For this
reason it is important to design a site that
standard internet users have no interest in,
but that a hacker would come across when
looking for targets.

Money is a typical motivating factor for
blackhats, and so we recognize that hackers
will be more likely to attempt to break into
a honeypot if they believe it will result in
monetary gain. An easy method to present
this illusion is by designing a site that mim-
ics a financial institution, but with relatively
relaxed security measures on the site. If the
site is visually well designed and attractive
but lacks even basic security measures such
as SSL security that many users may not
notice (although ideally a blackhat would),
it gives the appearance of a relatively inept
IT department - an ideal target for a black-
hat looking to make money through illicit
means.

3. Registering a Domain

Obtaining a domain name is the next step
in making a site appear legitimate. There
are many different sites on the internet that
allow you to register a domain name. Af-
ter registering the domain name you also
need to find a service willing to host your
DNS records for you, although, many sites
provide a primary DNS server in a pack-
age with registering for the domain name.
One site that we recommend which pro-
vides these services is Yahoo! Domains at

50



http://domains.yahoo.com - they provide a
number of tools and DNS servers and only
cost 2.99 per year for the domain name.

4. Listing with Search Engines

Unforunately, many search engines such as
google no longer allow you to list your site
manually anymore. Instead crawlers auto-
matically prowl the internet for new sites
that are linked in from existing ones. Danny
Sullivan discusses tips for making websites
more visible to search engines in [6]. Some of
the biggest tips are to make sure your web-
site is listed in the major website directo-
ries and to carefully craft the title / content
of the page with regard to certain search
terms. The primary directory service that
many major search engines use is the open
directory project at dmoz.org, and submit-
ting websites is simple using the ”suggest
URL” feature.

3.2 Hacker chatrooms

Another strategy to increase hacker traffic on
honeypots is to go straight to the source - finding
the hackers themselves and convincing them to
attack your machine. On any decently sized IRC
server, for example Undernet, the list of most
popular channels includes a number of hacker
chatrooms such as #cc-web where the opera-
tor advertises rooted machines, credit card num-
bers, senders, mailers, and hacked ebay accounts.
However, as one would not like to reveal to po-
tential hackers the true nature of the honeypots,
it is difficult to find ways to coax hackers into
attacking your machine without suspicion.

The simplest strategy available is simply to tell
the chatrooms that you had a personal machine
that you wanted to check the security of - and
that you would be glad to have anybody attempt
to break into it. Often hackers are motivated
by a need for personal acknowledgment, and by
presenting a challenge to the hacker you will be
acknowledging the hacker’s skills if he or she is
successful at breaking in to your machine.

Other strategies range from advertising the
machine as a valuable box that likely has credit
card numbers on it (possibly in conjunction with
a webserver set up on the machine) to inciting
hackers through insults in order to try and get
them to attack the machine in retaliation.

3.3 Obvious Advertising - contests

A third method for developing the traffic on a
honeypot is through active advertising such as
that done by http://www.rootthisbox.org/. Us-
ing an ingenious method for attracting traffic,
http://www.rootthisbox.org/ relies on attract-
ing hackers to the site through a challenge - to see
who is the best hacker. Machines are submitted
to http://www.rootthisbox.org and the goal of a
number of different teams is to gain root control
of as many machines as possible and hold onto
that control for as long as they can. Through-
out this process, each team is competing against
everyone else in what resembles a virtual game.
Setting a machine up to act as a honeypot and
submitting it to the contest would certainly gen-
erate a large amount of research data and ben-
efit the security community greatly. One of the
drawbacks of this approach, however, is it relies
on the ego and competitive nature of hackers who
are trying to show off their skills. I believe that
this strategy will attract more ”script kiddies”
than any other type of hacker because while ap-
pealing, blackhats have better things to do with
their time than participate in this kind of game.
Still, this type of experiment would nonetheless
produce interesting and valuable results.

4 Conclusions

Having highlighted a major drawback of honey-
pots I believe this is an area of important re-
search if we want to fully track the evolving at-
tacks that hackers employ. I have illustrated a
number of different methods that one could use
to cope with this problem, but there are certainly
more methods out there. In future experiments

51



I would ideally like to test some of these meth-
ods, in particular that of setting up an active
webserver on a honeypot. Honeynets are still a
young technology and as such there are many dif-
ferent experiments that can be done with them.
By expanding the rate at which data acquisition
is performed on honeynets we essentially expe-
dite all future experiments, which is why I be-
lieve this is an important first step in the field of
hacker analysis.

References

[1] The Honeynet Project.
Know Your Enemy - Trend Analysis
http://project.honeynet.org/papers/trends/
life-linux.pdf.

[2] Lance Spitner. Honeypots: Catching the In-
sider Threat Annual Computer Science Se-
curity Applications Conference, December
2003.

[3] Maximillian Dornseif, Sascha May. Model-
ing the costs and benefits of Honeynets The
Third Annual Workshop on Economics and
Information Security, May 2004.

[4] Xuxian Jiang, Dongyan Xu. BAIT-
TRAP: a Catering Honeypot Framework
http://www.cs.purdue.edu/homes/jiangx/
collapsar/publications/BaitTrap.pdf.

[5] Marc Rogers. A New Hacker Taxon-
omy http://homes.cerias.purdue.edu/ mkr/
hacker.doc, 2000.

[6] Danny Sullivan. Search
Engine Placement Tips
http://searchenginewatch.com/webmasters/
article.php/2168021, 2000.

52



Author Index

Crosta, Dan, 1

Jones, Heather, 9
Jucovy, Ethan G., 34

Li, Connie, 19

McAvinney, Alan, 27

Parsioan, Taufik, 19
Patton, Kenneth, 45
Prado, Javier, 9

Turner, Ben, 27

53


	Program
	Nectar: A Browser-Agnostic Contextual Web Annotation Tool
	Building a Heterogeneous Honeynet
	Profiling Honeynet Attackers
	Building a Neural Network for Misuse Detection
	Rabbitstew: A Robot Simulator with Variable Morphologies
	Sweeter Honeynets

