
CS21, Tia Newhall

Binary Search Trees (BST)
1. Hierarchical data structure with a single reference to root node
2. Each node has at most two child nodes (a left and

a right child)
3. Nodes are organized by the Binary Search property:

• Every node is ordered by some key data field(s)
• For every node in the tree, its key is greater than its

left child’s key and less than its right child’s key

25

15

10 22

 4 12 2418

50

35 70

31 44 9066

root

CS21, Tia Newhall

Some BST Terminology
1. The Root node is the top node in the hierarchy
2. A Child node has exactly one Parent node, a Parent node

has at most two child nodes, Sibling nodes share the same
Parent node (ex. node 22 is a child of node 15)

3. A Leaf node has no child nodes, an Interior node has at
least one child node (ex. 18 is a leaf node)

4. Every node in the BST is a Subtree of the BST rooted at
that node

25

15

10 22

 4 12 2418

50

35 70

31 44 9066

root subtree
(a BST
w/root 50)

CS21, Tia Newhall

Implementing Binary Search Trees
Self-referential class is used to build Binary Search Trees

public class BSTNode {
Comparable data;
BSTNode left;
BSTNode right;
public BSTNode(Comparable d) {
 data = d; left = right = null;
}

• left refers to the left child
• right refers to the left child
• data field refers to object that implements the Comparable
 interface, so that data fields can be compared to order nodes
 in the BST
• Single reference to the root of the BST

• All BST nodes can be accessed through root reference
 by recursively accessing left or right child nodes

CS21, Tia Newhall

Operations on BST

• Naturally recursive:
– Each node in the BST is itself a BST

• Some Operations:
– Create a BST

– Find node in BST using its key field

– Add a node to the BST

– Traverse the BST
 visit all the tree nodes in some order

CS21, Tia Newhall

data

left right

root

data

left right

bst_node root = null; // an empty BST

root = new BSTNode(new Integer(35)); // a BST w/1 node

Root.setLeft(new BSTNode(new Integer(22)); // add left
 // child

Create a Binary Search Tree

35

22

In this example, the
data fields ref to
Integer objects

CS21, Tia Newhall

Find a Node into the BST
• Use the search key to direct a recursive binary

search for a matching node
1. Start at the root node as current node
2. If the search key’s value matches the current

node’s key then found a match
3. If search key’s value is greater than current

node’s
1. If the current node has a right child, search right
2. Else, no matching node in the tree

4. If search key is less than the current node’s
1. If the current node has a left child, search left
2. Else, no matching node in the tree

CS21, Tia Newhall

25

15

10 22

 4 12 2418

50

35 70

31 44 9066

root

Example: search for 45 in the tree
(key fields are show in node rather than in separate obj ref to by data field):
1. start at the root, 45 is greater than 25, search in right subtree
2. 45 is less than 50, search in 50’s left subtree
3. 45 is greater than 35, search in 35’s right subtree
4. 45 is greater than 44, but 44 has no right subtree so 45 is not

in the BST
(1)

(2)

(3)

(4)

CS21, Tia Newhall

Insert Node into the BST

Always insert new node as leaf node

2. Start at root node as current node

3. If new node’s key < current’s key
1. If current node has a left child, search left

2. Else add new node as current’s left child

4. If new node’s key > current’s key
1. If current node has a right child, search right

2. Else add new node as current’s right child

CS21, Tia Newhall

25

15

10 22

 4 12 2418

50

35 70

31 44 9066

root (1)

(2)

(3)

(4)

Example: insert 60 in the tree:
1. start at the root, 60 is greater than 25, search in right subtree
2. 60 is greater than 50, search in 50’s right subtree
3. 60 is less than 70, search in 70’s left subtree
4. 60 is less than 66, add 60 as 66’s left child

60

CS21, Tia Newhall

Traversals
• Visit every node in the tree and perform some

operation on it
(ex) print out the data fields of each node

• Three steps to a traversal
1. Visit the current node
2. Traverse its left subtree
3. Traverse its right subtree

• The order in which you perform these three steps
results in different traversal orders:

– Pre-order traversal: (1) (2) (3)
– In-order traversal: (2) (1) (3)
– Post-order traversal: (2) (3) (1)

CS21, Tia Newhall

public void InOrder(bst_node root) {

 // stop the recursion:

if(root == null) {

return;

 }

 // recursively traverse left subtree:

 InOrder(root.leftChild());

 // visit the current node:

 Visit(root);

 // recursively traverse right subtree:

InOrder(root.rightChild());

}

Traversal Code

CS21, Tia Newhall

25

15

10 22

 4 12 2418

// in main: a call to InOrder passing root

InOrder(root);

// The call stack after the first few

// calls to InOrder(root.leftChild()):

root

root

root

root

root

main:

InOrder:

InOrder:

InOrder:

InOrder:

Call Stack (drawn upside down):

ca
ll

s

CS21, Tia Newhall

25

15

10 22

 4 12 2418

50

35 70

31 44 9066

root

InOrder(root) visits nodes in the following order:
4, 10, 12, 15, 18, 22, 24, 25, 31, 35, 44, 50, 66, 70, 90

A Pre-order traversal visits nodes in the following order:
25, 15, 10, 4, 12, 22, 18, 24, 50, 35, 31, 44, 70, 66, 90

A Post-order traversal visits nodes in the following order:
4, 12, 10, 18, 24, 22, 15, 31, 44, 35, 66, 90, 70, 50, 25

Traversal Examples

