N =

Binary Search Trees (BST)

Hierarchical data structure with a single reference to root node
Each node has at most two child nodes (a left and
aright child)
Nodes are organized by the Binary Search property:
« Every node isordered by some key datafield(s)
« For every nodeinthetree, itskey isgreater than its
left child’ s key and less than itsright child’' s key

root

15

10

125

22

18

50

35

31

70

66

|

CS21, TiaNewhall

N =

Some BST Terminology

The Root node is the top node in the hierarchy
A Child node has exactly one Parent node, a Parent node

has at most two child nodes, Sibling nodes share the same
Parent node (ex. node 22 isachild of node 15)
A Leaf node has no child nodes, an Interior node has at

least one child node (ex. 18 is aleaf node)

Every node in the BST is a Subtree of the BST rooted at

that node
root
15
<
10 22
\
12 18

125 L subtree
= ‘l (aBST
% 50, v wi/root 50)
SN N,
- |35 70 .
| .
) \
'[31] [44] (66 ;(ﬂ 3

"
"
\l_l_l_ ---
L} -
" a g w e

CS21, TiaNewhall

|mplementing Binary Search Trees

Self-referential classis used to build Binary Search Trees

public cl ass BSTNode {
Conpar abl e dat a;
BSTNode | eft;
BSTNode ri ght;
publ i ¢ BSTNode(Conpar able d) {
data = d; left =right = null;

e | eft referéto the left child

e i ght refersto theleft child

o datafield refers to object that implements the Comparable
Interface, so that data fields can be compared to order nodes
inthe BST

« Single reference to the root of the BST

 All BST nodes can be accessed through root reference
by recursively accessing left or right child nodes

CS21, TiaNewhall

Operations on BST

« Naturally recursive:
— Each nodeinthe BST Isitself aBST

« Some Operations.
— CreateaBST
— Find node in BST using its key field
— Add anodeto the BST

— Traversethe BST
vigit all the tree nodes in some order

CS21, TiaNewhall

Create a Binary Search Tree

bst _node root = null; // an enpty BST
root = new BSTNode(new Integer(35)); // a BST w 1 node
Root . set Lef t (new BSTNode(new | nteger(22)); // add |eft

[l child
root " dat a //@
| ef t right
// N
fata ,@ N
| ef t right In this example, the
datafieldsref to
/ \

\/ \/ Integer objects

CS21, TiaNewhall

Find a Node into the BST

« Usethe search key to direct arecursive binary

search for a matching node
1. Start at the root node as current node

2. |If the search key’ s value matches the current
node’ s key then found a match

3. If search key’svalueis greater than current
node's
1. If the current node has aright child, search right
2. Else, no matching node in the tree
4. If search key islessthan the current node’s

1. If the current node has aleft child, search left
2. Else, no matching node in the tree

CS21, TiaNewhall

Example: search for 45 in the tree

(key fields are show in node rather than in separate obj ref to by daIafieId)Z

W

In the BST

root

N

25

15

10 22

P ENy

(1)
e

50

35

31

(4)

start at the root, 45 is greater than 25, search in right subtree
45 isless than 50, search in 50’ s left subtree

45 Is greater than 35, search in 35’ sright subtree

45 is greater than 44, but 44 has no right subtree so 45 is not

(2)

70

66 ;(ﬂ

CS21, TiaNewhall

|nsert Node into the BST

Always insert new node as |eaf node
2. Start at root node as current node

3. If new node’'s key < current’s key

1. If current node has aleft child, search | eft
2. Else add new node as current’ s left child

4. If new node’'s key > current’s key

1. If current node has aright child, search right
2. Else add new node as current’ s right child

CS21, TiaNewhall

Example: insert 60 in the tree:
1. start at theroot, 60 is greater than 25, search in right subtree
2. 60 isgreater than 50, search in 50’ s right subtree
3. 60islessthan 70, search in 70’ s |eft subtree
4. 60 islessthan 66, add 60 as 66’ s |eft child

(1)

root \ /
A 3
15 50 / 3
N N
10 22 35 70
x RGN
4 12 18| (24| |31 44 66| |90

60

CS21, TiaNewhall

Traversals

Visit every node in the tree and perform some
operation on it

(ex) print out the data fields of each node

Three stepsto atraversal
1. Vigit the current node
2. Traverseitsleft subtree
3. Traverseitsright subtree

The order in which you perform these three steps
results in different traversal orders:.

— Pre-order traversal: (1) (2) (3)
— In-order traversal: (2) (1) (3)
— Post-order traversal: (2) (3) (1)

CS21, TiaNewhall

Traversal Code

public void InOrder(bst _node root) {
/] stop the recursion:
1f(root == null) {
ret urn;

}

[/ recursively traverse |left subtree:
| nOrder(root.leftChild());

[/ visit the current node:
Visit(root);

/[l recursively traverse right subtree:
| nOrder(root.rightChild());

CS21, TiaNewhall

[/ 1tn main: acall to InOder passing root
| nOrder (root);

[/ The call stack after the first few
/[l calls to InOrder(root.leftChild()):

Call Stack (drawn upside down):

main: root —

—
»| InOrder: | root —_ >
= \
U .
InOrder: | root —_
InOrder: |root ___ 22 /\

.

|NOrder: | root

CS21, TiaNewhall

Traversal Examples

INOrder(root) visits nodes in the following order:
4,10, 12, 15, 18, 22, 24, 25, 31, 35, 44, 50, 66, 70, 90

A Pre-order traversal visits nodes in the following order:
25, 15, 10, 4, 12, 22, 18, 24, 50, 35, 31, 44, 70, 66, 90

A Post-order traversal visits nodes in the following order:
4,12, 10, 18, 24, 22, 15, 31, 44, 35, 66, 90, 70, 50, 25

root " 25

15 150
o o
10 22 35 70

CS21, TiaNewhall

