N =

Binary Search Trees (BST)

Hierarchical data structure with a single pointer to root node
Each node has at most two child nodes (a left and
aright child)
Nodes are organized by the Binary Search property:
« Every node isordered by some key datafield(s)
« For every nodeinthetree, itskey isgreater than its
left child’ s key and less than itsright child’' s key

root

15

10

125

22

18

50

35

31

70

66

|

CS21, TiaNewhall

N =

Some BST Terminology

The Root node is the top node in the hierarchy
A Child node has exactly one Parent node, a Parent node

has at most two child nodes, Sibling nodes share the same
Parent node (ex. node 22 isachild of node 15)
A Leaf node has no child nodes, an Interior node has at

least one child node (ex. 18 is aleaf node)

Every node in the BST is a Subtree of the BST rooted at

that node
root
15
<
10 22
\
12 18

125 L subtree
. (aBST
" 50 ~+y w/root 50)
SN N,
- |35 70 .
| .
) \
'[31] [44] (66 ;(ﬂ i

-
-
\-—.—._ ---
L] -
"y pm w e "

CS21, TiaNewhall

|mplementing Binary Search Trees
Self-referential struct is used to build Binary Search Trees

struct bst _node {
| nt dat a;
struct bst node *left;
struct bst _node *right;

'

t ypedef struct bst _node bst_ node;

e | ef t holdsthe address of the left child
e i ght holdsthe address of the left child
« One or more data fields, a subset of which are the
key fields on which the nodes are ordered in the BST
« Single pointer to the root of the BST
« All BST nodes can be accessed through root pointer by
traversing left and right bst_node pointers

CS21, TiaNewhall

Operations on BST

« Naturally recursive:
— Each nodeinthe BST isitsalf aBST

e Some Operations.
— CreateaBST
— Find node in BST using its key field
— Add anodeto the BST

— Traversethe BST
vigit all the tree nodes in some order

CS21, TiaNewhall

Create aBST

[* a function that creates, Initiallzes,
* and returns a new bst node
*/
bst _node *Creat eANode(int val) {
bst node *newnode,;

newnode = mal | oc(si zeof (bst node);
| f (newnode == NULL) {
return NULL;
}
newnode- >data = val;
newnode->ri ght = newnode->left = NULL;
return newnode;

CS21, TiaNewhall

bst node *root = NULL; [/ an empty BST
root = CreateANode(35); // a BST w one node

| f(root !'= NULL) { // add a left child
root->left = CreateANode(22);
}
root "dat a 35
| ef t right
// N
dat a 22 \/
| ef t right
/ \

CS21, TiaNewhall

Find a Node into the BST

« Usethe search key to direct arecursive binary

search for a matching node
1. Start at the root node as current node

2. |If the search key’ s value matches the current
node’ s key then found a match

3. If search key’svalueis greater than current
node’ s

1. If the current node has aright child, search right
2. Else, no matching node in the tree

4. If search key islessthan the current node’s

1. If the current node has a left child, search left
2. Else, no matching node in the tree

CS21, TiaNewhall

Example: search for 45 in the tree:

1.

2.
3.
4.

start at the root, 45 is greater than 25, search in right subtree
45 isless than 50, search in 50’ s |eft subtree

45 is greater than 35, search in 35’ sright subtree

45 is greater than 44, but 44 has no right subtree so 45 is
not

Inthe BST

root \ /(1)

25 (2)

15
10 22 35

50

70

(4)

\ \
4 [12 18;ﬂ3144 eegcﬂ

CS21, TiaNewhall

|nsert Node into the BST

Always insert new node as |eaf node
2. Start at root node as current node

3. If new node’ s key < current’s key

1. If current node has aleft child, search | eft
2. Else add new node as current’ s left child

4. 1If new node€’ s key > current’s key

1. If current node has aright child, search right
2. Else add new node as current’ s right child

CS21, TiaNewhall

Example: insert 60 in the tree:
1. start at theroot, 60 is greater than 25, search in right subtree
2. 60 isgreater than 50, search in 50’ s right subtree
3. 60islessthan 70, search in 70’ s |eft subtree
4. 60 islessthan 66, add 60 as 66’ s left child

(1)

root \ /
A 3
15 50 / 3)
N N
10 22 35 70
x RGN
4 12 18| (24| |31 44 66| |90

60

CS21, TiaNewhall

Traversals

Visit every node in the tree and perform some
operation on It

(ex) print out the data fields of each node
Three stepsto atraversal

1. Vigit the current node

2. Traverseitsleft subtree

3. Traverseitsright subtree
The order in which you perform these three steps
resultsin different traversal orders:

— Pre-order traversal: (1) (2) (3)

— In-order traversal: (2) (1) (3)

— Post-order traversal: (2) (3) (1)

CS21, TiaNewhall

Traversal Code

[* recursive version of in-order traversal
*the i1terative version is ugly
*/
void I nOrder(bst _node *root) {
| f(root == NULL) {
ret urn;

}

| nOrder(root->left);// traverse |[ft subtree
Visit(root); /1 visit node
| nOrder(root->right);// traverse rt subtree

}

CS21, TiaNewhall

[/ 1tn main: acall to InOder passing root
| nOrder (root);

/[l The call stack after the first few
/|l recursive calls to InOrder(root->left):

Call Stack (drawn upside down):

main: root —

»| InOrder: | root —_ JES

8 S
InOrder:
INOrder: 22 /\

.

|NOrder:

CS21, TiaNewhall

Traversal Examples

INOrder(root) visits nodes in the following order:
4,10, 12, 15, 18, 22, 24, 25, 31, 35, 44, 50, 66, 70, 90

A Pre-order traversal visits nodes in the following order:
25, 15, 10, 4, 12, 22, 18, 24, 50, 35, 31, 44, 70, 66, 90

A Post-order traversal visits nodes in the following order:
4,12, 10, 18, 24, 22, 15, 31, 44, 35, 66, 90, 70, 50, 25

root " 25

il 150
o o
10 22 35 70

CS21, TiaNewhall

